

August 16, 2016

Sent VIA OVERNIGHT DELIVERY

Mr. Scott Anderson
Director
Division of Waste Management and Radiation Control
Utah Department of Environmental Quality
195 North 1950 West
P.O. Box 144880
Salt Lake City, UT 84114-4820

Re: Transmittal of 2nd Quarter 2016 Nitrate Monitoring Report

Stipulation and Consent Order Docket Number UGW12-04 White Mesa Uranium Mill

Dear Mr. Anderson:

Enclosed are two copies of the White Mesa Uranium Mill Nitrate Monitoring Report for the 2nd Quarter of 2016 as required by the Stipulation and Consent Order Docket Number UGW12-04, as well as two CDs each containing a word searchable electronic copy of the report.

If you should have any questions regarding this report please contact me.

Yours very truly,

ENERGY FUELS RESOURCES (USA) INC.

Kathy Weinel

Quality Assurance Manager

cc:

David C. Frydenlund Logan Shumway Harold R. Roberts David E. Turk Scott Bakken

White Mesa Uranium Mill Nitrate Monitoring Report

State of Utah
Stipulated Consent Agreement, December 2014
Docket No. UGW12-04

2nd Quarter (April through June) 2016

Prepared by:

Energy Fuels Resources (USA) Inc. 225 Union Boulevard, Suite 600 Lakewood, CO 80228

August 16, 2016

TABLE OF CONTENTS

1.0	INTRODUCTION	
2.0	GROUNDWATER NITRATE MONITORING	1
2.1	Annual of Control of American State of Control of Contr	1
2	.1.1 Nitrate Monitoring	1
2	.1.2 Parameters Analyzed	
2	.1.3 Groundwater Head and Level Monitoring	3
2.2	Sampling Methodology and Equipment and Decontamination Procedures	3
2	.2.1 Well Purging, Sampling and Depth to Groundwater	
2	.2.2 Piezometer Sampling	4
2.3	Field Data	5
2.4	Depth to Groundwater Data and Water Table Contour Map	5
2.5	Laboratory Results	5
2	.5.1 Copy of Laboratory Results	
2	.5.2 Regulatory Framework	5
3.0	QUALITY ASSURANCE AND DATA VALIDATION	5
3.1		
3.2		
3.3	Analyte Completeness Review	6
3.4	Data Validation	6
3	.4.1 Field Data QA/QC Evaluation	7
3	.4.2 Holding Time Evaluation	8
3	.4.3 Analytical Method Checklist	8
3	.4.4 Reporting Limit Evaluation	
3	.4.5 QA/QC Evaluation for Sample Duplicates	8
3	.4.6 Other Laboratory QA/QC	8
3	.4.7 Receipt Temperature Evaluation	9
3	.4.8 Rinsate Check	9
4.0	INTERPRETATION OF DATA 19	0
4.1	Interpretation of Groundwater Levels, Gradients and Flow Directions 1	0
4	.1.1 Current Site Groundwater Contour Map	
4	.1.2 Comparison of Current Groundwater Contour Map to Groundwater Conto	
	for Previous Quarter	
4	Depth to Groundwater Measured and Groundwater Elevation	5
4.2		
	.2.1 Hydraulic Containment and Control	
	.2.2 Current Nitrate and Chloride Isoconcentration Maps	
	.2.3 Comparison of Areal Extent	
	Nitrate and Chloride Concentration Trend Data and Graphs	
	.2.5 Interpretation of Analytical Data	
4.3	Estimation of Pumped Nitrate Mass and Residual Nitrate Mass within the Plum	ne
		1
5.0	LONG TERM PUMP TEST AT TWN-02, TW4-22, TW4-24, and TW4-25	
200	OPERATIONS REPORT 23	
5.1	Introduction	
5.2	Pumping Well Data Collection	3

5.3	Water Level Measurements24	4	
5.4	Pumping Rates and Volumes	4	
6.0	CORRECTIVE ACTION REPORT2	4	
6.1	Assessment of Previous Quarter's Corrective Actions	4	
7.0	CONCLUSIONS AND RECOMMENDATIONS2	4	
8.0	ELECTRONIC DATA FILES AND FORMAT2		
9.0	SIGNATURE AND CERTIFICATION		
	LIST OF TABLES		
Table	Summary of Well Sampling and Constituents for the Period		
Table 2	Nitrate Mass Removal Per Well Per Quarter		
Table :	Nitrate Well Pumping Rates and Volumes		
Table 4	Quarterly Calculation of Nitrate mass Removed and Total Volume of Wat Pumped	e	
Table :	Nitrate Data Over Time for MW-30, MW-31, MW-5, and MW-11		
Table	Slug Test Results		
Table '	7 Pre-Pumping Saturated Thickness		
Table	8 Pre-Pumping Hydraulic Gradients and Flow Calculations		
Table 9	Recalculated Background Flow		

INDEX OF TABS

- Tab A Site Plan and Perched Well Locations White Mesa Site
- Tab B Order of Sampling and Field Data Worksheets
- Tab C Kriged Current Quarter Groundwater Contour Map and Weekly, Monthly and Quarterly Depth to Water Data
- Tab D Kriged Previous Quarter Groundwater Contour Map
- Tab E Hydrographs of Groundwater Elevations Over Time for Nitrate Monitoring Wells
- Tab F Depths to Groundwater and Elevations Over Time for Nitrate Monitoring Wells
- Tab G Laboratory Analytical Reports
- Tab H Quality Assurance and Data Validation Tables
 - H-1 Field Data QA/QC Evaluation
 - H-2 Holding Time Evaluation
 - H-3 Analytical Method Check
 - H-4 Reporting Limit Evaluation
 - H-5 QA/QC Evaluation for Sample Duplicates
 - H-6 QC Control limits for Analysis and Blanks
 - H-7 Receipt Temperature Evaluation
 - H-8 Rinsate Evaluation
- Tab I Kriged Current Quarter Nitrate and Chloride Isoconcentration Maps
- Tab J Analyte Concentration Data Over Time
- Tab K Nitrate and Chloride Concentration Trend Graphs
- Tab L CSV Transmittal Letter
- Tab M Residual Mass Estimate Analysis Figure

ACRONYM LIST

AWAL American West Analytical Laboratory

CA Consent Agreement CAP Corrective Action Plan

CIR Contamination Investigation Report

DIFB Deionized Field Blanks

DWMRC Utah Division of Waste Management and Radiation Control

DRC Utah Division of Radiation Control EFRI Energy Fuels Resources (USA) Inc.

ft amsl feet above mean sea level
GWDP Groundwater Discharge Permit
LCS Laboratory Control Spike

MS Matrix Spike

MSD Matrix Spike Duplicate QA Quality Assurance

QAP Groundwater Monitoring Quality Assurance Plan

QC Quality Control

RPD Relative Percent Difference SCO Stipulated Consent Order SOPs Standard Operating Procedures

UDEQ Utah Department of Environmental Quality

VOC Volatile Organic Compound

1.0 INTRODUCTION

The Utah Department of Environmental Quality ("UDEQ") Division of Waste Management and Radiation Control ("DWMRC") noted in a Request dated September 30, 2008 (the "Request"), for a Voluntary Plan and Schedule to Investigate and Remediate Nitrate Contamination at the White Mesa Uranium Mill (the "Mill") (the "Plan"), that nitrate levels have exceeded the State water quality standard of 10 mg/L in certain monitoring wells. As a result of the Request, Energy Fuels Resources (USA) Inc. ("EFRI") entered into a Stipulated Consent Agreement with the Utah Water Quality Board in January 2009 which directed the preparation of a Nitrate Contamination Investigation Report ("CIR"). A subsequent letter dated December 1, 2009, among other things, recommended that EFRI also address elevated chloride concentrations in the CIR. The Stipulated Consent Agreement was amended in August 2011. Under the amended Consent Agreement ("CA"), EFRI submitted a Corrective Action Plan ("CAP"), pursuant to the requirements of the Utah Groundwater Quality Protection Rules [UAC R317-6-6.15(C - E)] on November 29, 2011 and revised versions of the CAP on February 27, 2012 and May 7, 2012. On December 12, 2012, DWMRC signed the Stipulation and Consent Order ("SCO"), Docket Number UGW12-04, which approved the EFRI CAP, dated May 7, 2012. The SCO ordered EFRI to fully implement all elements of the May 7, 2012 CAP.

Based on the schedule included in the CAP and as delineated and approved by the SCO, the activities associated with the implementation of the CAP began in January 2013. The reporting requirements specified in the CAP and SCO are included in this quarterly nitrate report.

This is the Quarterly Nitrate Monitoring Report, as required under the SCO, State of Utah Docket No. UGW12-04 for the second quarter of 2016. This report meets the requirements of the SCO, State of UDEQ Docket No. UGW12-04 and is the document which covers nitrate corrective action and monitoring activities during the second quarter of 2016.

2.0 GROUNDWATER NITRATE MONITORING

2.1 Samples and Measurements Taken During the Quarter

A map showing the location of all groundwater monitoring wells, piezometers, existing wells, temporary chloroform contaminant investigation wells and temporary nitrate investigation wells is attached under Tab A. Nitrate samples and measurements taken during this reporting period are discussed in the remainder of this section.

2.1.1 Nitrate Monitoring

Quarterly sampling for nitrate monitoring parameters was performed in the following wells:

TWN-1	TW4-22*
TWN-2	TW4-24*
TWN-3	TW4-25*
TWN-4	Piezometer 1
TWN-7	Piezometer 2
TWN-18	Piezometer 3A**

As discussed in Section 2.1.2 the analytical constituents required by the CAP are inorganic chloride and nitrate+nitrite as N (referred to as nitrate in this document)

* Wells TW4-22, TW4-24, TW4-25 are chloroform investigation wells (wells installed and sampled primarily for the chloroform investigation) and are sampled as part of the chloroform program. The analytical suite for these three wells includes nitrate, chloride and a select list of Volatile Organic Compounds ("VOCs") as specified in the chloroform program. These three wells are included here because they are being pumped as part of the remediation of the nitrate contamination as required by the SCO and the CAP. The nitrate and chloride data are included in this report as well as in the chloroform program quarterly report. The VOC data for these three wells will be reported in the chloroform quarterly monitoring report only.

** Piezometer 3 was abandoned and replaced with Piezometer 3A in March 2016.

The December 12, 2012 SCO approved the CAP, which specified the cessation of sampling in TWN-5, TWN-6, TWN-8, TWN-9, TWN-10, TWN-11, TWN-12, TWN-13, TWN-14, TWN-15, TWN-16, TWN-17, and TWN-19. The CAP and SCO also approved the abandonment of TWN-5, TWN-8, TWN-9, TWN-10, TWN-11, TWN-12, TWN-13, TWN-15, and TWN-17 within 1 year of the SCO approval. These wells were abandoned in accordance with the DWMRC-approved Well Abandonment Procedure on July 31, 2013. Wells TWN-6, TWN-14, TWN-16, and TWN-19 have been maintained for depth to groundwater monitoring only, as noted in the CAP.

Table 1 provides an overview of all locations sampled during the current period, along with the date samples were collected from each location, and the date(s) upon which analytical data were received from the contract laboratory. Table 1 also identifies rinsate samples collected, as well as sample numbers associated with any required duplicates.

As indicated in Table 1, nitrate monitoring was performed in the nitrate monitoring wells, chloroform wells TW4-22, TW4-24, TW4-25 and Piezometers 1, 2, and 3A. Analytical data for all of the above-listed wells, and the piezometers, are included in Tab G.

Nitrate and chloride are also monitored in all of the Mill's groundwater monitoring wells and chloroform investigation wells. Data from those wells for this quarter are incorporated in certain maps and figures in this report but are discussed in their respective programmatic reports.

2.1.2 Parameters Analyzed

Locations sampled during this reporting period were analyzed for the following constituents:

- Inorganic Chloride
- Nitrate plus Nitrite as Nitrogen (referred to herein as nitrate)

Use of analytical methods consistent with the requirements found in the White Mesa Mill Groundwater Quality Assurance Plan, ("QAP") Revision 7.2, dated June 7, 2012 was confirmed for all analytes, as discussed later in this report.

2.1.3 Groundwater Head and Level Monitoring

Depth to groundwater was measured in the following wells and/or piezometers, pursuant to Part I.E.3 of the Groundwater Discharge Permit ("GWDP") (dated August 24, 2012):

- The quarterly groundwater compliance monitoring wells
- Existing well MW-4 and all of the temporary chloroform investigation wells
- Piezometers P-1, P-2, P-3, P-4 and P-5
- MW-20, MW-22, and MW-34
- The DR piezometers that were installed during the Southwest Hydrogeologic Investigation
- Nitrate wells TWN-1, TWN-2, TWN-3, TWN-4, TWN-6, TWN-7, TWN-14, TWN-16, TWN-18 and TWN-19

In addition to the above, depth to water measurements are routinely observed in conjunction with sampling events for all wells sampled during quarterly and accelerated efforts, regardless of the sampling purpose.

All well levels used for groundwater contour mapping were measured and recorded within 5 calendar days of each other as indicated by the measurement dates in the summary sheet under Tab C. Field data sheets for groundwater measurements are also provided in Tab C.

Weekly and monthly depth to groundwater measurements were taken in the chloroform pumping wells MW-4, MW-26, TW4-1, TW4-2, TW4-11, TW4-19, TW4-20, TW4-4, TW4-21, TW4-37, and the nitrate pumping wells TW4-22, TW4-24, TW4-25, and TWN-2.

In addition, monthly water level measurements were taken in non-pumping wells MW-27, MW-30, MW-31, TWN-1, TWN-3, TWN-4, TWN-7, and TWN-18 as required by the CAP.

2.2 Sampling Methodology and Equipment and Decontamination Procedures

The QAP provides a detailed presentation of procedures utilized for groundwater sampling activities under the GWDP (August 24, 2012).

The sampling methodology, equipment and decontamination procedures that were performed for the nitrate contaminant investigation, as summarized below, are consistent with the QAP.

2.2.1 Well Purging, Sampling and Depth to Groundwater

A list of the wells in order of increasing nitrate contamination is generated quarterly. The order for purging is thus established. The list is included with the Field Data Worksheets under Tab B. Mill personnel start purging with all of the nondetect wells and then move to the wells with detectable nitrate concentrations, progressing from the wells having the lowest nitrate contamination to wells with the highest nitrate contamination.

Before leaving the Mill office, the pump and hose are decontaminated using the cleaning agents described in Attachment 2-2 of the QAP. Rinsate blanks are collected at a frequency of one rinsate per 20 field samples.

Purging is completed to remove stagnant water from the casing and to assure that representative samples of formation water are collected for analysis. There are three purging strategies specified in the QAP that are used to remove stagnant water from the casing during groundwater sampling at the Mill. The three strategies are as follows:

- 1. Purging three well casing volumes with a single measurement of field parameters
- 2. Purging two casing volumes with stable field parameters (within 10% Relative Percent Difference ["RPD"])
- 3. Purging a well to dryness and stability (within 10% RPD) of a limited list of field parameters after recovery.

Mill personnel proceed to the first well, which is the well with the lowest concentration (i.e. non-dectect) of nitrate based on the previous quarter's sampling results. Well depth measurements are taken and the one casing volume is calculated. The purging strategy that will be used for the well is determined at this time based on the depth to water measurement and the previous production of the well. The Grundfos pump (a 6 to 10 gallon per minute [gpm] pump) is then lowered to the appropriate depth in the well and purging is started. At the first well, the purge rate is measured for the purging event by using a calibrated 5 gallon bucket. After the evacuation of the well has been completed, the well is sampled when possible, and the pump is removed from the well and the process is repeated at each well location moving from the least contaminated to most contaminated well. If sample collection is not possible due to the well being purged dry, a sample is collected after recovery using a disposable bailer and as described in Attachment 2-3 of the QAP. Sample collection follows the procedures described in Attachment 2-4 of the QAP.

After the samples have been collected for a particular well, the samples are placed into a cooler that contains ice. The well is then recapped and Mill personnel proceed to the next well. If a bailer has been used it is disposed of.

Decontamination of non-dedicated equipment, using the reagents in Attachment 2-2 of the QAP, is performed between each sample location, and at the beginning of each sampling day, in addition to the pre-event decontamination described above.

2.2.2 Piezometer Sampling

Samples are collected from Piezometers 1, 2 and 3A, if possible. Samples are collected from piezometers using a disposable bailer after one set of field measurements have been collected. Due to the difficulty in obtaining samples from the piezometers, the purging protocols set out in the QAP are not followed.

After samples are collected, the bailer is disposed of and samples are placed into a cooler containing ice for sample preservation and transit to the Mill's contract analytical laboratory, American West Analytical Laboratories ("AWAL").

2.3 Field Data

Attached under Tab B are copies of all Field Data Worksheets that were completed during the quarter for the nitrate investigation monitoring wells and piezometers identified in Section 2.1.1 and Table 1.

2.4 Depth to Groundwater Data and Water Table Contour Map

Depth-to-groundwater measurements that were utilized for groundwater contours are included on the Quarterly Depth to Water Sheet at Tab C of this Report along with the kriged groundwater contour map for the current quarter generated from this data. All well levels used for groundwater contour mapping were measured and recorded within 5 calendar days of each other as indicated by the measurement dates in the summary sheet under Tab C. A copy of the kriged groundwater contour map generated from the previous quarter's data is provided under Tab D.

2.5 Laboratory Results

2.5.1 Copy of Laboratory Results

The analytical results were provided by AWAL. Table 1 lists the dates when analytical results were reported to the Quality Assurance ("QA") Manager for each well or other sample.

Analytical results for the samples collected for this quarter's nitrate investigation and a limited list of chloroform investigation nitrate and chloride results are provided under Tab G of this Report. Also included under Tab G are the results of analyses for duplicate samples and rinsate samples for this sampling effort, as identified in Table 1. See the Groundwater Monitoring Report and Chloroform Monitoring Report for this quarter for nitrate and chloroform analytical results for the groundwater monitoring wells and chloroform investigation wells not listed in Table 1.

2.5.2 Regulatory Framework

As discussed in Section 1.0 above, the Request, Plan, and CA each triggered a series of actions on EFRI's part. Potential surficial sources of nitrate and chloride have been described in the December 30, 2009 CIR and additional investigations into potential sources were completed and discussed with DWMRC in 2011. Pursuant to the CA, the CAP was submitted to the Director of the Division Waste Management and Radiation Control (the "Director") on May 7, 2012. The CAP describes activities associated with the nitrate in groundwater. The CAP was approved by the Director on December 12, 2012. This quarterly report documents the monitoring consistent with the program described in the CAP.

3.0 QUALITY ASSURANCE AND DATA VALIDATION

EFRI's QA Manager performed a QA/Quality Control ("QC") review to confirm compliance of the monitoring program with the requirements of the QAP. As required in the QAP, data QA includes preparation and analysis of QC samples in the field, review of field procedures, an analyte completeness review, and QC review of laboratory data methods and data. Identification

of field QC samples collected and analyzed is provided in Section 3.1. Discussion of adherence to Mill sampling Standard Operating Procedures ("SOPs") is provided in Section 3.2. Analytical completeness review results are provided in Section 3.3. The steps and tests applied to check field data QA/QC, holding times, receipt temperature and laboratory data QA/QC are discussed in Sections 3.4.1 through 3.4.7 below.

The analytical laboratory has provided summary reports of the analytical QA/QC measurements necessary to maintain conformance with National Environmental Laboratory Accreditation Conference certification and reporting protocol. The Analytical Laboratory QA/QC Summary Reports, including copies of the Mill's Chain of Custody and Analytical Request Record forms for each set of Analytical Results, follow the analytical results under Tab G. Results of the review of the laboratory QA/QC information are provided under Tab H and discussed in Section 3.4, below.

3.1 Field QC Samples

The following QC samples were generated by Mill personnel and submitted to the analytical laboratory in order to assess the quality of data resulting from the field sampling program.

Field QC samples for the nitrate investigation program consist of one field duplicate sample for each 20 samples, DI Field Blanks ("DIFB"), and equipment rinsate samples.

During the quarter, one duplicate sample was collected as indicated in Table 1. The duplicate was sent blind to the analytical laboratory and analyzed for the same parameters as the nitrate wells.

One rinsate blank sample was collected as indicated on Table 1. Rinsate samples are labeled with the name of the subsequently purged well with a terminal letter "R" added (e.g. TWN-7R).

The field QC sample results are included with the routine analyses under Tab G.

3.2 Adherence to Mill Sampling SOPs

The QA Manager review of Mill Personnel's adherence to the existing SOPs, confirmed that the QA/QC requirements established in the QAP and Chloroform QAP were met.

3.3 Analyte Completeness Review

All analyses required by the GWDP for nitrate monitoring for the period were performed.

3.4 Data Validation

The QAP and GWDP (August 24, 2012) identify the data validation steps and data QC checks required for the nitrate monitoring program. Consistent with these requirements, the QA Manager performed the following evaluations: a field data QA/QC evaluation, a holding time evaluation, an analytical method check, a reporting limit evaluation, a QC evaluation of sample duplicates, a QC evaluation of control limits for analysis and blanks, a receipt temperature

evaluation, and a rinsate evaluation. Because no VOCs are analyzed for the nitrate contamination investigation, no trip blanks are required in the sampling program. Each evaluation is discussed in the following sections. Data check tables indicating the results of each test are provided under Tab H.

3.4.1 Field Data QA/QC Evaluation

The QA Manager performs a review of all field recorded parameters to assess their adherence with QAP requirements. The assessment involved review of two sources of information: the Field Data Sheets and the Quarterly Depth to Water summary sheet. Review of the Field Data Sheets addresses well purging volumes and stability of five parameters: conductance, pH, temperature, redox potential, and turbidity. Review of the Depth to Water data confirms that all depth measurements used for development of groundwater contour maps were conducted within a five-day period of each other. The results of this quarter's review are provided under Tab H.

Based upon the review of the field data sheets, field work was completed in compliance with the QAP purging and field measurement requirements. A summary of the purging techniques employed and field measurements taken is described below:

Purging Two Casing Volumes with Stable Field Parameters (within 10% RPD)

Wells TWN-01, TWN-04, and TWN-18 were sampled after two casing volumes were removed. Field parameters pH, specific conductivity, turbidity, water temperature, and redox potential were measured during purging. All field parameters for this requirement were stable within 10% RPD.

Purging a Well to Dryness and Stability of a Limited List of Field Parameters

Wells TWN-03 and TWN-07 were purged to dryness before two casing volumes were evacuated. After well recovery, one set of measurements for the field parameters of pH, specific conductivity, and water temperature only were taken; the samples were collected, and another set of measurements for pH, specific conductivity, and water temperature were taken. Stabilization of pH, conductivity and temperature are required within 10% RPD under the QAP. All field parameters for this requirement were stable within 10% RPD.

Continuously Pumped Wells

Wells TWN-02, TW4-22, TW4-24, and TW4-25 are continuously pumped wells. These wells are pumped on a set schedule per the remediation plan and are considered sufficiently evacuated to immediately collect a sample. As previously noted, TW4-22, TW4-24, and TW4-25 are chloroform investigation wells and are sampled under the chloroform program. Data for nitrate and chloride are provided here for completeness purposes.

During review of the field data sheets, it was observed that sampling personnel consistently recorded depth to water to the nearest 0.01 foot.

All field parameters for all wells were within the QAP required limits, as indicated below.

The field data collected during the quarter were in compliance with QAP requirements.

3.4.2 Holding Time Evaluation

QAP Table 1 identifies the method holding times for each suite of parameters. Sample holding time checks are provided in Tab H. All samples were received and analyzed within the required holding time.

3.4.3 Analytical Method Checklist

All analytical methods reported by the laboratory were checked against the required methods enumerated in the QAP. Analytical method checks are provided in Tab H. All methods were consistent with the requirements of the QAP.

3.4.4 Reporting Limit Evaluation

All analytical method reporting limits ("RLs") reported by the laboratory were checked against the reporting limits enumerated in the QAP. Reporting Limit Checks are provided in Tab H. All analytes were measured and reported to the required reporting limits, with the exception of several samples that had increased reporting limits due to matrix interference or required dilution due to the sample concentration. However, in all of those cases the analytical results were greater than the reporting limit used.

3.4.5 QA/QC Evaluation for Sample Duplicates

Section 9.1.4 a) of the QAP states that RPDs will be calculated for the comparison of duplicate and original field samples. The QAP acceptance limits for RPDs between the duplicate and original field sample is less than or equal to 20% unless the measured results are less than 5 times the required detection limit. This standard is based on the EPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, February 1994, 9240.1-05-01 as cited in the QAP. The RPDs are calculated for duplicate pairs for all analytes regardless of whether or not the reported concentrations are greater than 5 times the required detection limits. However, data will be considered noncompliant only when the results are greater than 5 times the required detection limit and the RPD is greater than 20%.

All duplicate results were within 20% RPD for the quarterly samples. The duplicate results are provided under Tab H.

3.4.6 Other Laboratory QA/QC

Section 9.2 of the QAP requires that the laboratory's QA/QC Manager check the following items in developing data reports: (1) sample preparation information is correct and complete, (2) analysis information is correct and complete, (3) appropriate Analytical Laboratory procedures are followed, (4) analytical results are correct and complete, (5) QC samples are within established control limits, (6) blanks are within QC limits, (7) special sample preparation and analytical requirements have been met, and (8) documentation is complete. In addition to other laboratory checks described above, EFRI's QA Manager rechecks QC samples and blanks (items (5) and (6)) to confirm that the percent recovery for spikes and the relative percent difference for spike duplicates are within the method-specific required limits, or that the case narrative

sufficiently explains any deviation from these limits. Results of this quantitative check are provided in Tab H.

The lab QA/QC results met these specified acceptance limits.

The QAP Section 8.1.2 requires that a Matrix Spike/Matrix Spike Duplicate ("MS/MSD") pair be analyzed with each analytical batch. The QAP does not specify acceptance limits for the MS/MSD pair, and the QAP does not specify that the MS/MSD pair be prepared on EFRI samples only. Acceptance limits for MS/MSDs are set by the laboratories. The review of the information provided by the laboratories in the data packages verified that the QAP requirement to analyze an MS/MSD pair with each analytical batch was met. While the QAP does not require it, the recoveries were reviewed for compliance with the laboratory established acceptance limits. The QAP does not require this level of review, and the results of this review are provided for information only.

The information from the Laboratory QA/QC Summary Reports indicates that the MS/MSDs recoveries and the associated RPDs for the samples were within acceptable laboratory limits for the regulated compounds except as indicated in Tab H. The MS/MSD recoveries that are outside the laboratory established acceptance limits do not affect the quality or usability of the data because recoveries above or below the acceptance limits are indicative of matrix interference. Matrix interferences are applicable to the individual sample results only. The requirement in the QAP to analyze a MS/MSD pair with each analytical batch was met and as such the data are compliant with the QAP.

The information from the Laboratory QA/QC Summary Reports indicates that the Laboratory Control Sample recoveries were acceptable, which indicate that the analytical system was operating properly.

The QAP Section 8.1.2 requires that each analytical batch shall be accompanied by a reagent blank. All analytical batches routinely contain a blank, which is a laboratory-grade water blank sample made and carried through all analytical steps. For the Mill samples, a method blank is prepared for all analytical methods. The information from the Laboratory QA/QC Summary Reports indicates that the method blanks did not contain detections of any target analytes above the Reporting Limit.

3.4.7 Receipt Temperature Evaluation

Chain of Custody sheets were reviewed to confirm compliance with the QAP requirement in QAP Table 1 that samples be received at 6°C or lower. Sample temperatures checks are provided in Tab H. All samples were received within the required temperature limit.

3.4.8 Rinsate Check

Rinsate checks are provided in Tab H. A comparison of the rinsate blank sample concentration levels to the QAP requirements – that rinsate sample concentrations be one order of magnitude lower than that of the actual well – indicated that all of the rinsate blank analytes met this criterion. All rinsate and DIFB blank samples were non-detect for the quarter.

4.0 INTERPRETATION OF DATA

4.1 Interpretation of Groundwater Levels, Gradients and Flow Directions.

4.1.1 Current Site Groundwater Contour Map

As stated above, a listing of groundwater level readings for the current quarter (shown as depth to groundwater in feet) is included under Tab C. The data from this tab has been interpreted (interpolated by kriging) and plotted in a water table contour map, provided under the same tab. The contour map is based on the current quarter's data for all wells.

The water level contour maps indicate that perched water flow ranges from generally southwesterly beneath the Mill site and tailings cells to generally southerly along the eastern and western margins of White Mesa south of the tailings cells. Perched water mounding associated with the wildlife ponds locally changes the generally southerly perched water flow patterns. For example, northeast of the Mill site, mounding associated with wildlife ponds disrupts the generally southwesterly flow pattern, to the extent that locally northerly flow occurs near PIEZ-1. The impact of the mounding associated with the northern ponds, to which water has not been delivered since March 2012, is diminishing and is expected to continue to diminish as the mound decays due to reduced recharge.

Not only has recharge from the wildlife ponds impacted perched water elevations and flow directions at the site, but the cessation of water delivery to the northern ponds, which are generally upgradient of the nitrate and chloroform plumes at the site, resulted in changing conditions that were expected to impact constituent concentrations and migration rates within the plumes. Specifically, past recharge from the ponds helped limit many constituent concentrations within the plumes by dilution while the associated groundwater mounding increased hydraulic gradients and contributed to plume migration. Since use of the northern ponds was discontinued in March, 2012, increases in constituent concentrations in many wells, and decreases in hydraulic gradients within the plumes, are attributable to reduced recharge and the decay of the associated groundwater mound. EFRI and its consultants anticipated these changes and discussed these and other potential effects during discussions with DWMRC in March 2012 and May 2013.

The impacts associated with cessation of water delivery to the northern ponds were expected to propagate downgradient (south and southwest) over time. Wells close to the ponds were generally expected to be impacted sooner than wells farther downgradient of the ponds. Therefore, constituent concentrations were generally expected to increase in downgradient wells close to the ponds before increases were detected in wells farther downgradient of the ponds. Although such increases were anticipated to result from reduced dilution, the magnitude and timing of the increases were anticipated to be and have been difficult to predict due to the complex permeability distribution at the site and factors such as pumping and the rate of decay of the groundwater mound. Because of these complicating factors, some wells completed in higher permeability materials were expected to be impacted sooner than other wells completed in lower permeability materials even though the wells completed in lower permeability materials were closer to the ponds.

In general, nitrate concentrations within and adjacent to the nitrate plume appear to have been impacted to a lesser extent than chloroform and nitrate concentrations within and in the vicinity of the chloroform plume. This behavior is reasonable considering that the chloroform plume is generally more directly downgradient of and more hydraulically connected (via higher permeability materials) to the wildlife ponds.

Localized increases in concentrations of constituents such as nitrate and chloride within and near the nitrate plume may occur even when the nitrate plume is under control based on the Nitrate CAP requirements. Ongoing mechanisms that can be expected to increase the concentrations of nitrate and chloride locally as a result of reduced wildlife pond recharge include but are not limited to:

- 1) Reduced dilution the mixing of low constituent concentration pond recharge into existing perched groundwater will be reduced over time.
- 2) Reduced saturated thicknesses dewatering of higher permeability zones receiving primarily low constituent concentration pond water will result in wells intercepting the zones receiving a smaller proportion of the low constituent concentration water.

The combined impact of the above two mechanisms was anticipated to be more evident at chloroform pumping wells MW-4, MW-26, TW4-4, TW4-19, and TW4-20; nitrate pumping wells TW4-22, TW4-24, TW4-25, and TWN-2; and non-pumped wells adjacent to the pumped wells. Impacts were also expected to occur over time at wells added to the chloroform pumping network during the first quarter of 2015 (TW4-1, TW4-2, TW4-11), and to those added during the second quarter of 2015 (TW4-21 and TW4-37). The overall impact was expected to be generally higher constituent concentrations in these wells over time until mass reduction resulting from pumping and natural attenuation eventually reduces concentrations. Short-term changes in concentrations at pumping wells and wells adjacent to pumping wells are also expected to result from changes in pumping conditions.

In addition to changes in the flow regime caused by reduced wildlife pond recharge, perched flow directions are locally influenced by operation of the chloroform and nitrate pumping wells. As shown in the detail water level map provided under Tab C, well defined cones of depression are evident in the vicinity of all chloroform pumping wells except TW4-4, which began pumping in the first quarter of 2010, and TW4-37, which began pumping during the second quarter of 2015. Although operation of chloroform pumping well TW4-4 has depressed the water table in the vicinity of TW4-4, a well-defined cone of depression is not clearly evident. The lack of a well-defined cone of depression near TW4-4 likely results from 1) variable permeability conditions in the vicinity of TW4-4, and 2) persistent relatively low water levels at adjacent well TW4-14. The lack of a well-defined cone of depression near TW4-37 likely results from recent start-up and close proximity to other pumping wells.

Pumping of nitrate wells TW4-22, TW4-24, TW4-25, and TWN-2 began during the first quarter of 2013. Water level patterns near these wells are expected to be influenced by the presence of and the decay of the groundwater mound associated with the northern wildlife ponds, and by the persistently low water level elevation at TWN-7, which is located upgradient of the nitrate pumping wells.

Capture associated with nitrate pumping is expected to continue to increase over time as water levels decline due to pumping and to cessation of water delivery to the northern wildlife ponds. Interaction between nitrate and chloroform pumping is expected to enhance the capture of the nitrate pumping system. The long term interaction between the nitrate and chloroform pumping systems is evolving, and changes will be reflected in data collected as part of routine monitoring.

As discussed above, variable permeability conditions are one likely reason for the lack of a well-defined cone of depression near chloroform pumping well TW4-4. Changes in water levels at wells immediately south and southeast (downgradient) of TW4-4 resulting from TW4-4 pumping are expected to be muted because TW4-4 is located at a transition from relatively high to relatively low permeability conditions south and southeast of TW4-4. As will be discussed below, the permeability of the perched zone at TW4-6 and TW4-26, and relatively recently installed wells TW4-29, TW4-30, TW4-31, TW4-33, TW4-34, and TW4-35 is one to two orders of magnitude lower than at TW4-4, and the permeability at TW4-27 is approximately three orders of magnitude lower than at TW4-4. Detecting water level drawdowns in wells immediately south and southeast of TW4-4 resulting from TW4-4 pumping has also been complicated by the general, long-term increase in water levels in this area attributable to past wildlife pond recharge.

Between the fourth quarter of 2007 and the fourth quarter of 2009 (just prior to the start of TW4-4 pumping), water levels at TW4-4 and TW4-6 increased by nearly 2.7 and 2.9 feet at rates of approximately 1.2 feet/year and 1.3 feet/year, respectively. However, the rate of increase in water level at TW4-6 after the start of pumping at TW4-4 (first quarter of 2010) was reduced to less than 0.5 feet/year suggesting that TW4-6 is within the hydraulic influence of TW4-4.

Since the fourth quarter of 2013, water levels in all wells currently within the chloroform plume south of TW4-4 (TW4-6, TW4-29, and TW4-33) have been trending downward. This downward trend is attributable to the cessation of water delivery to the northern wildlife ponds and pumping. However, water level trends have been upward in many wells located at the margin of the chloroform plume southeast of TW4-4 (TW4-14, TW4-27, TW4-30, and TW4-31). These wells appear as yet to be responding to past wildlife pond recharge and expansion of the groundwater mound. (note: hydrographs for these wells are provided in the quarterly Chloroform Monitoring Report.

These spatially variable water level trends likely result from pumping conditions, the permeability distribution, and distance from the wildlife ponds. Wells that are relatively hydraulically isolated (due to completion in lower permeability materials or due to intervening lower permeability materials) and that are more distant from pumping wells and the wildlife ponds, are expected to respond more slowly to pumping and reduced recharge than wells that are less hydraulically isolated and are closer to pumping wells and the wildlife ponds. Wells that are more hydraulically isolated will also respond more slowly to changes in pumping.

The lack of a well-defined cone of depression at TW4-4 is also influenced by the persistent, relatively low water level at non-pumping well TW4-14, located east of TW4-4 and TW4-6. For the current quarter, the water level at TW4-14 (approximately 5533.2 feet above mean sea level ["ft amsl"]), is nearly 3 feet lower than the water level at TW4-6 (approximately 5536.1 ft amsl) and approximately 6 feet lower than the water level at TW4-4 (approximately 5539.5 ft amsl),

even though TW4-4 is pumping. However, water level differences among these wells are diminishing.

The static water levels at wells TW4-14 and downgradient well TW4-27 (installed south of TW4-14 in the fourth quarter of 2011) were similar (within 1 to 2 feet) until the third quarter of 2014; both appeared anomalously low. The current quarterly water level at TW4-27 (approximately 5528.3 ft amsl) is nearly 5 feet lower than the water level at TW4-14 (5533.2 ft amsl). Recent increases in water level differences between TW4-14 and TW4-27 are due to more rapid increases in water levels at TW4-14 resulting from past delivery of water to the northern wildlife ponds. The rate of water level increase at TW4-27 is smaller than at TW4-14 because TW4-27 is farther downgradient of the ponds.

Prior to the installation of TW4-27, the persistently low water level at TW4-14 was considered anomalous because it appeared to be downgradient of all three wells TW4-4, TW4-6, and TW4-26, yet chloroform had not been detected at TW4-14. Chloroform had apparently migrated from TW4-4 to TW4-6 and from TW4-6 to TW4-26. This suggested that TW4-26 was actually downgradient of TW4-6, and TW4-6 was actually downgradient of TW4-4, regardless of the flow direction implied by the low water level at TW4-14. The water level at TW4-26 (5534.6 feet amsl) is, however, lower than water levels at adjacent wells TW4-6 (5536.1 feet amsl), and TW4-23 (5537.6 feet amsl), as shown in the detail water level map under Tab C.

Hydraulic tests indicate that the permeability at TW4-27 is an order of magnitude lower than at TW4-6 and three orders of magnitude lower than at TW4-4 (see Hydro Geo Chem, Inc. [HGC], September 20, 2010: Hydraulic Testing of TW4-4, TW4-6, and TW4-26, White Mesa Uranium Mill, July 2010; and HGC, November 28, 2011: Installation, Hydraulic Testing, and Perched Zone Hydrogeology of Perched Monitoring Well TW4-27, White Mesa Uranium Mill Near Blanding, Utah). Past similarity of water levels at TW4-14 and TW4-27, and the low permeability estimate at TW4-27, suggested that both wells were completed in materials having lower permeability than nearby wells. The low permeability condition likely reduced the rate of long-term water level increase at TW4-14 and TW4-27 compared to nearby wells, yielding water levels that appeared anomalously low. This behavior is consistent with hydraulic test data collected from relatively recently installed wells TW4-29, TW4-30, TW4-31, TW4-33, TW4-34 and TW4-35, which indicate that the permeability of these wells is one to two orders of magnitude higher than the permeability of TW4-27 (see: HGC, January 23, 2014, Contamination Investigation Report, TW4-12 and TW4-27 Areas, White Mesa Uranium Mill Near Blanding, Utah; and HGC, July 1, 2014, Installation and Hydraulic Testing of TW4-35 and TW4-36, White Mesa Uranium Mill Near Blanding, Utah [As-Built Report]). Hydraulic tests also indicate that the permeability at TW4-36 is slightly higher than but comparable to the low permeability at TW4-27, suggesting that TW4-36, TW4-14 and TW4-27 are completed in a continuous low permeability zone.

4.1.2 Comparison of Current Groundwater Contour Map to Groundwater Contour Map for Previous Quarter

The groundwater contour maps for the Mill site for the previous quarter, as submitted with the Nitrate Monitoring Report for the previous quarter, are attached under Tab D. Small (<1 foot) changes in water levels were reported at the majority of site wells; water levels and water level

contours for the site have not changed significantly since the last quarter except for a few locations.

A comparison of the water table contour maps for the current quarter (second quarter of 2016) to the water table contour maps for the previous quarter (first quarter of 2016) indicates similar patterns of drawdowns associated with the pumping wells. Nitrate pumping wells TW4-22, TW4-24, TW4-25, and TWN-2 were brought into operation during the first quarter of 2013 and their impact on water level patterns has been apparent since the fourth quarter of 2013. Although a large expansion in capture occurred with the addition of chloroform pumping wells TW4-1, TW4-2, TW4-11, TW4-21 and TW4-37 in 2015, a significant cone of depression associated with TW4-37 is not yet evident.

Drawdowns at chloroform pumping well TW4-2 and nitrate pumping well TWN-2 increased by more than 2 feet this quarter. Water level changes at other nitrate and chloroform pumping wells were less than 2 feet, although both increases (decreases in drawdown) and decreases (increases in drawdown) occurred. Water level fluctuations at pumping wells typically occur in part because of fluctuations in pumping conditions just prior to and at the time the measurements are taken. The reported water level for chloroform pumping well TW4-11 is slightly below the depth of the Brushy Basin contact this quarter. Although both increases and decreases in drawdown occurred in pumping wells, the overall apparent capture of the combined pumping system is approximately the same as last quarter.

As discussed in Section 4.1.1, pumping at chloroform well TW4-4, which began in the first quarter of 2010, has depressed the water table near TW4-4, but a well-defined cone of depression is not clearly evident, likely due to variable permeability conditions near TW4-4 and the persistently low water level at adjacent well TW4-14.

Reported water level decreases of up to 0.94 feet at Piezometers 1, 2, 4, and 5, TWN-1, and TWN-4 may result from cessation of water delivery to the northern wildlife ponds as discussed in Section 4.1.1 and the consequent continuing decay of the associated perched water mound. Reported water level decreases of approximately 0.88 feet and 0.94 feet at Piezometers 4 and 5, respectively, may also result from reduced recharge at the southern wildlife pond.

Reported water levels decreased by approximately 3 feet at MW-20, and increased by approximately 9 feet and 3 feet, respectively, at MW-14 and TWN-19. Water level variability at MW-20 likely results from low permeability and variable intervals between purging/sampling and water level measurement. The increase at MW-14 compensates for the reported decrease last quarter, suggesting that last quarter's reading was anomalous. The increase at TWN-19, located at the far upgradient corner of the property, may have resulted from offsite influences.

4.1.3 Hydrographs

Attached under Tab E are hydrographs showing groundwater elevation in each nitrate contaminant investigation monitor well over time. Per the CAP, nitrate wells TWN-6, TWN-14, TWN-16, and TWN-19 have been maintained for depth to groundwater monitoring only. These hydrographs are also included in Tab E.

4.1.4 Depth to Groundwater Measured and Groundwater Elevation

Attached in Tab F are tables showing depth to groundwater measured and groundwater elevation over time for each of the wells listed in Section 2.1.1 above.

4.2 Effectiveness of Hydraulic Containment and Capture

4.2.1 Hydraulic Containment and Control

The CAP states that hydraulic containment and control will be evaluated in part based on water level data and in part on concentrations in wells downgradient of pumping wells TW4-22 and TW4-24.

As per the CAP, the fourth quarter of 2013 was the first quarter that hydraulic capture associated with nitrate pumping wells TW4-22, TW4-24, TW4-25, and TWN-2 was evaluated. Hydraulic containment and control based on water level data is considered successful per the CAP if the entire nitrate plume upgradient of TW4-22 and TW4-24 falls within the combined capture of the nitrate pumping wells. Capture zones based on water level contours calculated by kriging the current quarter's water level data are provided on water level contour maps included under Tab C. The nitrate capture zones are defined by the bounding stream tubes associated with nitrate pumping wells. Each bounding stream tube represents a flow line parallel to the hydraulic gradient and therefore perpendicular to the intersected water level contours. Assuming that the stream tubes do not change over time, all flow between the bounding stream tubes associated with a particular pumping well is presumed to eventually reach and be removed by that well. Capture associated with chloroform pumping wells is also included on these maps because the influence of the chloroform and nitrate pumping systems overlap.

The specific methodology for calculating the nitrate capture zones is substantially the same as that used since the fourth quarter of 2005 to calculate the capture zones for the chloroform program, as agreed to by the DWMRC and EFRI. The procedure for calculating nitrate capture zones is as follows:

- 1) Calculate water level contours by gridding the water level data on approximately 50-foot centers using the ordinary linear kriging method in SurferTM. Default kriging parameters are used that include a linear variogram, an isotropic data search, and all the available water level data for the quarter, including relevant seep and spring elevations.
- 2) Calculate the capture zones by hand from the kriged water level contours following the rules for flow nets:
 - from each pumping well, reverse track the stream tubes that bound the capture zone of each well.
 - maintain perpendicularity between each stream tube and the kriged water level contours.

Compared to last quarter, both increases and decreases in water levels occurred at nitrate and chloroform pumping wells. The water levels in chloroform pumping wells MW-26, TW4-1, TW4-2, TW4-4, TW4-11, TW4-19, TW4-20, and TW4-37 decreased by approximately 0.6, 1.6, 3.9, 0.9, 1.6, 0.5, 1.5, and 0.7 feet respectively, while the water levels in chloroform pumping wells MW-4 and TW4-21 increased by approximately 0.2 and 0.05 feet, respectively. The water

level in nitrate pumping wells TWN-2 and TW4-25 decreased by approximately 4 feet and 0.2 feet, respectively, while the water levels in nitrate pumping wells TW4-22 and TW4-24 increased by approximately 0.5 and 2 feet, respectively. Overall, the apparent capture of the combined pumping systems is about the same as last quarter.

The capture associated with nitrate pumping wells and chloroform pumping wells added in 2015 is expected to increase over time as water levels continue to decline due to pumping and to cessation of water delivery to the northern wildlife ponds. Slow development of hydraulic capture is consistent with and expected based on the relatively low permeability of the perched zone at the site. Furthermore, the presence of the perched groundwater mound, and the apparently anomalously low water level at TWN-7, will influence the definition of capture associated with the nitrate pumping system.

That pumping is likely sufficient to eventually capture the entire plume upgradient of TW4-22 and TW4-24 can be demonstrated by comparing the combined average pumping rates of all nitrate pumping wells for the current quarter to estimates of pre-pumping flow through the nitrate plume near the locations of TW4-22 and TW4-24. The pre-pumping flow calculation presented from the fourth quarter of 2013 through the second quarter of 2015 was assumed to represent a steady state 'background' condition that included constant recharge, hydraulic gradients, and saturated thicknesses; the calculation did not account for reduced recharge and saturated thickness caused by cessation of water delivery to the northern wildlife ponds since March, 2012. Because significant water level declines have occurred in upgradient portions of the nitrate plume due to reduced recharge, hydraulic gradients within the plume have been reduced independent of pumping. Changes related to reduced wildlife pond recharge have also resulted in reduced well productivity. Generally reduced productivities of nitrate pumping well TW4-24 and chloroform pumping well TW4-19 since the third quarter of 2014 are at least partly the result of reduced recharge.

The pre-pumping flow through the nitrate plume near TW4-22 and TW4-24 that was presented from the fourth quarter of 2013 through the second quarter of 2015 was estimated using Darcy's Law to lie within a range of approximately 1.31 gpm to 2.79 gpm. Calculations were based on an average hydraulic conductivity range of 0.15 feet per day (ft/day) to 0.32 ft/day (depending on the calculation method), a pre-pumping hydraulic gradient of 0.025 feet per foot (ft/ft), a plume width of 1,200 feet, and a saturated thickness (at TW4-22 and TW4-24) of 56 feet. The hydraulic conductivity range was estimated by averaging the results obtained from slug test data that were collected automatically by data loggers from wells within the plume and analyzed using the KGS unconfined slug test solution available in AqtesolveTM (see Hydro Geo Chem, Inc. [HGC], August 3, 2005: Perched Monitoring Well Installation and Testing at the White Mesa Uranium Mill, April Through June 2005; HGC, March 10, 2009: Perched Nitrate Monitoring Well Installation and Hydraulic Testing, White Mesa Uranium Mill; and HGC, March 17 2009: Letter Report to David Frydenlund, Esq, regarding installation and testing of TW4-23, TW4-24, and TW4-25). These results are summarized in Table 6. Data from fourth quarter 2012 were used to estimate the pre-pumping hydraulic gradient and saturated thickness. These data are summarized in Tables 7 and 8.

The average hydraulic conductivity was estimated to lie within a range of 0.15 ft/day to 0.32 ft/day. Averages were calculated four ways. As shown in Table 6 arithmetic and geometric

averages for wells MW-30, MW-31, TW4-22, TW4-24, TW4-25, TWN-2, and TWN-3 were calculated as 0.22 and 0.15 ft/day, respectively. Arithmetic and geometric averages for a subset of these wells (MW-30, MW-31, TW4-22, and TW4-24) were calculated as 0.32 and 0.31 ft/day, respectively. The lowest value, 0.15 ft/day, represented the geometric average of the hydraulic conductivity estimates for all the plume wells. The highest value, 0.32 ft/day, represented the arithmetic average for the four plume wells having the highest hydraulic conductivity estimates (MW-30, MW-31, TW4-22, and TW4-24).

Pre-pumping hydraulic gradients were estimated at two locations; between TW4-25 and MW-31 (estimated as 0.023 ft/ft), and between TWN-2 and MW-30 (estimated as 0.027 ft/ft). These results were averaged to yield the value used in the calculation (0.025 ft/ft). The pre-pumping saturated thickness of 56 feet was an average of pre-pumping saturated thicknesses at TW4-22 and TW4-24.

As discussed above the hydraulic gradient and saturated thickness used in the pre-pumping calculations were assumed to represent a steady state 'background' condition that was inconsistent with the cessation of water delivery to the northern wildlife ponds, located upgradient of the nitrate plume. Hydraulic gradients and saturated thicknesses within the plume have declined since nitrate pumping began as a result of two factors: reduced recharge from the ponds, and the effects of nitrate pumping. A more representative 'background' flow condition that accounts for reduced wildlife pond recharge was presented in Attachment N (Tab N) of the third quarter 2015 Nitrate Monitoring report. The original pre-pumping 'background' flow range of 1.31 gpm to 2.79 gpm has been recalculated to range from 0.79 gpm to 1.67 gpm, as presented in Table 9. This calculation is still considered conservative because the high end of the range assumed an arithmetic average hydraulic conductivity of a subset of plume wells having the highest conductivities.

The cumulative volume of water removed by TW4-22, TW4-24, TW4-25, and TWN-2 during the current quarter was approximately 268,129 gallons. This equates to an average total extraction rate of approximately 2.1 gpm over the 91 day quarter. This average is similar to last quarter's average of approximately 2.2 gpm and accounts for time periods when pumps were off due to insufficient water columns in the wells. The current quarter's pumping (2.1 gpm) exceeds the high end of the recalculated 'background' flow range by a factor of approximately 1.3.

Because the arithmetic average hydraulic conductivity of a subset of plume wells having the highest conductivities was used to calculate the high end of the 'background' flow range, the high end is considered less representative of actual conditions than using the geometric average conductivity of all of the plume wells. Therefore, nitrate pumping likely exceeds flow through the plume by a factor greater than 1.3 times the high end of the recalculated range. Nitrate pumping is likely adequate at the present time even with reduced productivity at TW4-24.

The CAP states that MW-5, MW-11, MW-30, and MW-31 are located downgradient of TW4-22 and TW4-24. MW-30 and MW-31 are within the plume near its downgradient edge and MW-5 and MW-11 are outside and downgradient of the plume. Per the CAP, hydraulic control based on concentration data will be considered successful if the nitrate concentrations in MW-30 and MW-31 remain stable or decline, and the nitrate concentrations in downgradient wells MW-5 and MW-11 do not exceed the 10 mg/L standard.

Table 5 presents the nitrate concentration data for MW-30, MW-31, MW-5 and MW-11, which are down-gradient of pumping wells TW4-22 and TW4-24. Based on these concentration data, the nitrate plume is under control.

The nitrate plume has not migrated downgradient to MW-5 or MW-11; this quarter, the nitrate concentration at MW-5 is approximately 0.16 mg/L and at MW-11 approximately 0.12 mg/L. Between the previous and current quarters, nitrate concentrations decreased in both MW-30 and MW-31. Nitrate in MW-30 decreased from 20 mg/L to 17.3 mg/L and nitrate in MW-31 decreased slightly from 18.8 mg/L to 18.6 mg/L. Although short-term fluctuations have occurred, nitrate concentrations in MW-30 and MW-31 have been relatively stable, demonstrating that plume migration is minimal or absent.

Chloride has been relatively stable at MW-30 but is generally increasing at MW-31 (see Tab J and Tab K, discussed in Section 4.2.4). The apparent increase in chloride and stable nitrate at MW-31 suggests a natural attenuation process that is affecting nitrate but not chloride. A likely process that would degrade nitrate but leave chloride unaffected is reduction of nitrate by pyrite. The likelihood of this process in the perched zone is discussed in HGC, December 7 2012; Investigation of Pyrite in the Perched Zone, White Mesa Uranium Mill Site, Blanding, Utah.

4.2.2 Current Nitrate and Chloride Isoconcentration Maps

Included under Tab I of this Report are current nitrate and chloride iso-concentration maps for the Mill site. Nitrate iso-contours start at 5 mg/L and chloride iso-contours start at 100 mg/L because those values appear to separate the plumes from background. All nitrate and chloride data used to develop these iso-concentration maps are from the current quarter's sampling events.

4.2.3 Comparison of Areal Extent

The area of the nitrate plume is slightly smaller than last quarter due to a slight contraction in the vicinity of chloroform pumping well TW4-19, caused by a decrease in concentration from approximately 16 mg/L to 1.3 mg/L. TW4-18 remained outside the plume with a concentration of approximately 5 mg/L. TW4-18 was encompassed by an eastward-extending 'spur' in the plume during the third quarter of 2015, similar to an occurrence during the third quarter of 2013.

Changes in nitrate concentrations near TW4-18 are expected to result from changes in pumping and from the cessation of water delivery to the northern wildlife ponds. The reduction in low-nitrate recharge from the ponds appeared to be having the anticipated effect of generally increased nitrate concentrations in wells downgradient of the ponds.

However, decreasing to relatively stable nitrate concentrations at most wells in the vicinity of TW4-18 between the first quarter of 2014 and the second quarter of 2015 after previous increases suggested that conditions in this area had stabilized. Since the second quarter of 2015, concentrations at TW4-18 have been above and below 10 mg/L, but have remained below 10 mg/L since the third quarter of 2015. Over this same time period, concentrations at nearby wells TW4-3 and TW4-9 remained below 10 mg/L, concentrations at TW4-5 exceeded 10 mg/L only once (last quarter), and concentrations at TW4-10 remained above 10 mg/L.

Although increases in concentration in the area downgradient of the wildlife ponds have been anticipated as the result of reduced dilution, the magnitude and timing of the increases are difficult to predict due to the measured variations in hydraulic conductivity at the site and other factors. Nitrate in the area directly downgradient (south to south-southwest) of the northern wildlife ponds is associated with the chloroform plume, is cross-gradient of the nitrate plume as defined in the CAP, and is within the capture zone of the chloroform pumping system. Perched water flow in the area is to the southwest in the same approximate direction as the main body of the nitrate plume.

Nitrate concentrations at the downgradient edge of the plume (MW-30 and MW-31) continue to be relatively stable, demonstrating that nitrate plume migration is minimal or absent. As discussed in Section 4.2.1, stable nitrate at MW-30 and MW-31 is consistent with a natural attenuation process affecting nitrate but not chloride, as elevated chloride associated with the nitrate plume continues to migrate downgradient.

With regard to chloroform, changes in the boundary of the chloroform plume are attributable in part to the initiation of nitrate pumping. Once nitrate pumping started, the boundary of the chloroform plume migrated to the west toward nitrate pumping well TW4-24, and then to the southwest to reincorporate chloroform monitoring wells TW4-6 and TW4-16. Concentration increases leading to the reincorporation of these wells occurred first at TW4-24, then at TW4-16 and TW4-6. Subsequent contraction of the plume eastward away from TW4-24 and TW4-16 through last quarter is attributable in part to the start-up of additional chloroform pumping wells during the first half of 2015, and reduced productivity at TW4-24. More details regarding the chloroform data and interpretation are included in the Quarterly Chloroform Monitoring Report submitted under separate cover.

4.2.4 Nitrate and Chloride Concentration Trend Data and Graphs

Attached under Tab J is a table summarizing values for nitrate and chloride for each well over time.

Attached under Tab K are graphs showing nitrate and chloride concentration plots in each monitor well over time.

Graphical presentation of data for Piezometer 3A will be included in Tab K when two or more data points are available.

4.2.5 Interpretation of Analytical Data

Comparing the nitrate analytical results to those of the previous quarter, as summarized in the tables included under Tab J, the following observations can be made for wells within and immediately surrounding the nitrate plume:

- a) Nitrate concentrations have increased by more than 20% in the following wells compared to last quarter: TW4-22, TWN-4, and TWN-7;
- b) Nitrate concentrations have decreased by more than 20% in the following wells compared to last quarter: TW4-19, TWN-2, and TWN-18;

- c) Nitrate concentrations have remained within 20% in the following wells compared to last quarter: MW-26, MW-27, MW-30, MW-31, TW4-5, TW4-16, TW4-18, TW4-20, TW4-21, TW4-24, TW4-25, TWN-1, and TWN-3;
- d) MW-25, and MW-32 remained non-detect; and
- e) MW-11 increased from non-detect to 0.12 mg/L.

As indicated, nitrate concentrations for many of the wells with detected nitrate were within 20% of the values reported during the previous quarter, suggesting that variations are within the range typical for sampling and analytical error. The remaining wells had changes in concentration greater than 20%. The latter includes chloroform pumping well TW4-19; nitrate pumping wells TW4-22 and TWN-2; and non-pumping wells TWN-4, TWN-7, and TWN-18. Wells TWN-4, TWN-7, and TWN-18 are cross- to upgradient of the nitrate plume; concentrations at TWN-7 and TWN-18 are less than 2 mg/L.

TWN-4 is near nitrate pumping wells TW4-25 and TWN-2, and TWN-7 is near nitrate pumping well TWN-2. Fluctuations in concentrations at pumping wells and wells adjacent to pumping wells likely result in part from the effects of pumping as discussed in Section 4.1.1. In addition, concentrations at TWN-4 are expected to be influenced by the adjacent wildlife ponds and concentrations at TWN-7 and TWN-18 are expected to be influenced by their locations near the upgradient margin of the nitrate plume.

The nitrate concentration in chloroform pumping well TW4-19 decreased from approximately 15.7 mg/L to 1.3 mg/L, causing contraction of the plume to the west. MW-27, located west of TWN-2, and TWN-18, located north of TWN-3, bound the nitrate plume to the west and north (See Figure I-1 under Tab I). In addition, the southernmost (downgradient) boundary of the plume remains between MW-30/MW-31 and MW-5/MW-11. Nitrate concentrations at MW-5 (adjacent to MW-11) and MW-11 have historically been low (< 1 mg/L) or non-detect for nitrate (See Table 5). The concentration increase from non-detect to 0.12 mg/L at MW-11 is likely due to its location immediately downgradient of the plume. MW-25, MW-26, MW-32, TW4-9, TW4-16, TW4-18, TW4-19, TW4-25, TWN-1, and TWN-4 bound the nitrate plume to the east.

Nitrate concentrations outside the nitrate plume are greater than 10 mg/L at a few locations: TW4-10 (14.9 mg/L), TW4-12 (30.7 mg/L), TW4-26 (15.2 mg/L), TW4-27 (21.2 mg/L), and TW4-28 (29 mg/L). Concentrations at TW4-18 are also occasionally above 10 mg/L. Each of these wells is located southeast of the nitrate plume as defined in the CAP and is separated from the plume by a well or wells having nitrate concentrations that are either non-detect, or, if detected, are less than 10 mg/L. Concentrations at TW4-10, TW4-12, TW4-26, TW4-27 and TW4-28 are within 20% of last quarter's concentrations.

Since 2010, nitrate concentrations at TW4-10 and TW4-18 have been above and below 10 mg/L Concentrations were below 10 mg/L between the first quarter of 2011 and second quarter of 2013, and mostly close to or above 10 mg/L between the second quarter of 2013 and third quarter of 2015. However, concentrations at TW4-18 have been below 10 mg/L over the last three quarters. Since 2010, concentrations at nearby well TW4-5 have exceeded 10 mg/L only twice, and concentrations at nearby wells TW4-3 and TW4-9 have remained below 10 mg/L.

Nitrate at TW4-5, TW4-10, and TW4-18 is associated with the chloroform plume, and is within the capture zone of the chloroform pumping system. Elevated nitrate at TW4-12, TW4-26, TW4-27, and TW4-28 is likely related to former cattle ranching operations at the site.

Chloride concentrations are measured because elevated chloride (greater than 100 mg/L) is associated with the nitrate plume. Chloride concentrations at all sampled locations this quarter are within 20% of their respective concentrations during the previous quarter except at pumping wells TW4-19, TW4-24, and TW4-25. These changes likely result from changes in pumping.

The chloride concentration at piezometer PIEZ-3A (109 mg/L), installed as a replacement to abandoned piezometer PIEZ-3, was more than three times higher than last quarter's concentration at PIEZ-3 (approximately 33 mg/L). The nitrate concentration at PIEZ-3A (approximately 8.2 mg/L) was also higher than last quarter's concentration at PIEZ-3 (approximately 2.2 mg/L).

4.3 Estimation of Pumped Nitrate Mass and Residual Nitrate Mass within the Plume

Nitrate mass removed by pumping is summarized in Table 2, and includes mass removed by both chloroform and nitrate pumping wells. Table 3 shows the volume of water pumped at each well and Table 4 provides the details of the nitrate removal for each well. Mass removal calculations begin with the third quarter of 2010 because the second quarter, 2010 data were specified to be used to establish a baseline mass for the nitrate plume. As stated in the CAP, the baseline mass is to be calculated using the second quarter, 2010 concentration and saturated thickness data "within the area of the kriged 10 mg/L plume boundary." The second quarter, 2010 data set was considered appropriate because "the second quarter, 2010 concentration peak at TWN-2 likely identifies a high concentration zone that still exists but has migrated away from the immediate vicinity of TWN-2."

As shown in Table 2, a total of approximately 1,800 lb of nitrate has been removed from the perched zone since the third quarter of 2010. Prior to the first quarter of 2013, all direct nitrate mass removal resulted from operation of chloroform pumping wells MW-4, MW-26, TW4-4, TW4-19, and TW4-20. During the current quarter:

- A total of approximately 100 lb of nitrate was removed by the chloroform pumping wells and by nitrate pumping wells TW4-22, TW4-24, TW4-25, and TWN-2.
- Of the 100 lb removed during the current quarter, approximately 46 lb, (or 46 %), was removed by the nitrate pumping wells.

The calculated nitrate mass removed was approximately 24% lower than last quarter.

As discussed in Section 4.3.1, achievable pumping rates are expected to diminish over time as saturated thicknesses are reduced by pumping and by cessation of water delivery to the northern wildlife ponds. Attachment N (Tab N) of the third quarter 2015 Nitrate Monitoring report provides an evaluation of reduced productivity at chloroform pumping well TW4-19 and nitrate pumping well TW4-24.

Baseline mass and current quarter mass estimates (nitrate + nitrite as N) for the nitrate plume are approximately 43,700 lb and 28,470 lbs, respectively. Mass estimates were calculated within the plume boundaries as defined by the kriged 10 mg/L isocon by 1) gridding (kriging) the nitrate concentration data on 50-foot centers; 2) calculating the volume of water in each grid cell based on the saturated thickness and assuming a porosity of 0.18; 3) calculating the mass of nitrate+nitrite as N in each cell based on the concentration and volume of water for each cell; and 4) totaling the mass of all grid cells within the 10 mg/L plume boundary. Data used in these calculations included data from wells listed in Table 3 of the CAP.

The nitrate mass estimate for the current quarter is lower than the baseline estimate by approximately 15,230 lb, and this difference is greater than the amount of nitrate mass removed directly by pumping. Changes in the quarterly mass estimates are expected to result primarily from 1) nitrate mass removed directly by pumping, 2) natural attenuation of nitrate, and 3) changes in nitrate concentrations in wells within the plume as a result of re-distribution of nitrate within the plume and changes in saturated thicknesses. Redistribution of nitrate within the plume and changes in saturated thicknesses will be impacted by changes in pumping and in background conditions such as the decay of the perched water mound associated with the northern wildlife ponds. Cessation of water delivery to the northern wildlife ponds is expected to result in reduced saturated thicknesses and reduced dilution, which in turn is expected to result in increases in concentrations.

The mass estimate during the current quarter (28,470 lb) was smaller than the mass estimate during the previous quarter (33,080 lb) by 4,610 lb or approximately 14 %. This difference is attributable to 1) lower average nitrate concentrations within the plume and 2) slightly decreased plume area resulting from a concentration decrease at TW4-19 this quarter.

Nitrate mass removal by pumping and natural attenuation (expected to result primarily from pyrite oxidation/nitrate reduction) act to lower nitrate mass within the plume. Changes resulting from redistribution of nitrate within the plume are expected to result in both increases and decreases in concentrations at wells within the plume and therefore increases and decreases in mass estimates based on those concentrations, thus generating 'noise' in the mass estimates. Furthermore, because the sum of sampling and analytical error is typically about 20%, changes in the mass estimates from quarter to quarter of up to 20% could result from typical sampling and analytical error alone. Only longer-term analyses of the mass estimates that minimize the impacts of these quarter to quarter variations will provide useful information on plume mass trends. Over the long term, nitrate mass estimates are expected to trend downward as a result of direct removal by pumping and through natural attenuation.

As specified in the CAP, once eight quarters of data were collected (starting with the first quarter of 2013), a regression trend line was to be applied to the quarterly mass estimates and evaluated. The trend line was to be updated quarterly and reevaluated as additional quarters of data were collected. The evaluation was to determine whether the mass estimates were increasing, decreasing, or stable.

As the fourth quarter of 2014 constituted the eighth quarter as specified in the CAP, the mass estimates were plotted, and a regression line was fitted to the data and evaluated. The regression

line has been updated each quarter since the fourth quarter of 2014 as shown in Figure M.1 of Tab M. The fitted line shows a decreasing trend in the mass estimates.

5.0 LONG TERM PUMP TEST AT TWN-02, TW4-22, TW4-24, and TW4-25 OPERATIONS REPORT

5.1 Introduction

Beginning in January 2013, EFRI began long term pumping of TW4-22, TW4-24, TW4-25, and TWN-02 as required by the Nitrate CAP, dated May 7, 2012 and the SCO dated December 12, 2012.

In addition, as a part of the investigation of chloroform contamination at the Mill site, EFRI has been conducting a Long Term Pump Test on MW-4, TW4-19, MW-26, and TW4-20, and, since January 31, 2010, TW4-4. In anticipation of the final approval of the GCAP, beginning on January 14, 2015, EFRI began long term pumping of TW4-1, TW4-2, and TW4-11 and began long term pumping of TW4-21 and TW4-37 on June 9, 2015. The purpose of the test is to serve as an interim action that will remove a significant amount of chloroform-contaminated water while gathering additional data on hydraulic properties in the area of investigation.

Because wells MW-4, TW4-19, MW-26, TW4-4, TW4-20, TW4-01, TW4-02, TW4-11, TW4-21, and TW4-37 are pumping wells that may impact the removal of nitrate, they are included in this report and any nitrate removal realized as part of this pumping is calculated and included in the quarterly reports.

The following information documents the operational activities during the quarter.

5.2 Pumping Well Data Collection

Data collected during the quarter included the following:

- Measurement of water levels at MW-4, TW4-19, MW-26, and TW4-20 and, commencing regularly on March 1, 2010, TW4-4, on a weekly basis,
- Measurement of water levels weekly at TW4-22, TW4-24, TW4-25, and TWN-02 commencing January 28, 2013,
- Measurement of water levels weekly at TW4-01, TW4-02, and TW4-11 commencing on January 14, 2015,
- Measurement of water levels weekly at TW4-21 and TW4-37 commencing on June 9, 2015, and on a monthly basis selected temporary wells and permanent monitoring wells.
- Measurement of pumping history, including:
 - pumping rates
 - total pumped volume
 - operational and non-operational periods.
- Periodic sampling of pumped water for chloroform and nitrate/nitrite analysis and other constituents

5.3 Water Level Measurements

Beginning August 16, 2003, water level measurements from chloroform pumping wells MW-4, MW-26, and TW4-19 were conducted weekly. From commencement of pumping TW4-20, and regularly after March 1, 2010 for TW4-4, water levels in these two chloroform pumping wells have been measured weekly. From commencement of pumping in January 2013, water levels in wells TW4-22, TW4-24, TW4-25, and TWN-02 have been measured weekly. Copies of the weekly Depth to Water monitoring sheets for MW-4, MW-26, TW4-19, TW4-20, TW4-4, TW4-22, TW4-24, TW4-25, TWN-02, TW4-01, TW4-02, TW4-11, TW4-21, and TW4-37 are included under Tab C.

Monthly depth to water monitoring is required for all of the chloroform contaminant investigation wells and non-pumping wells MW-27, MW-30, MW-31, TWN-1, TWN-3, TWN-4, TWN-7, and TWN-18. Copies of the monthly depth to Water monitoring sheets are included under Tab C.

5.4 Pumping Rates and Volumes

The pumping wells do not pump continuously, but are on a delay device. The wells purge for a set amount of time and then shut off to allow the well to recharge. Water from the pumping wells is either transferred to the Cell 1 evaporation pond or is used in the Mill process.

The pumped wells are fitted with a flow meter which records the volume of water pumped from the well in gallons. The flow meter readings shown in Tab C are used to calculate the gallons of water pumped from the wells each quarter as required by Section 7.2.2 of the CAP. The average pumping rates and quarterly volumes for each of the pumping wells are shown in Table 3. The cumulative volume of water pumped from each of the wells is shown in Table 4.

Unless specifically noted below, no operational problems were observed with the well or pumping equipment during the quarter.

6.0 CORRECTIVE ACTION REPORT

There are no corrective actions required during the current monitoring period.

6.1 Assessment of Previous Quarter's Corrective Actions

There were no corrective actions required during the previous quarters' monitoring period.

7.0 CONCLUSIONS AND RECOMMENDATIONS

As per the CAP, the current quarter is the eleventh quarter that hydraulic capture associated with nitrate pumping wells TW4-22, TW4-24, TW4-25, and TWN-2 was evaluated. The apparent combined capture of the nitrate and chloroform pumping systems is approximately the same as last quarter. Capture associated with nitrate pumping wells is expected to increase over time as water levels decline due to pumping and to cessation of water delivery to the northern wildlife

ponds. Furthermore, the evaluation of the long term interaction between nitrate and chloroform pumping systems requires more data to be collected as part of routine monitoring. Slow development of hydraulic capture by the nitrate pumping system is consistent with and expected based on the relatively low permeability of the perched zone at the site. Definition of capture associated with the nitrate pumping system is also influenced by the perched groundwater mound and the apparently anomalously low water level at TWN-7.

Nitrate pumping is likely sufficient to eventually capture the entire nitrate plume upgradient of TW4-22 and TW4-24 even with reduced productivity at TW4-24. Hydraulic gradients and saturated thicknesses within the plume have declined since nitrate pumping began as a result of two factors: reduced recharge from the ponds, and the effects of nitrate pumping. A more representative 'background' flow condition that accounts for reduced wildlife pond recharge was presented in Attachment N (Tab N) of the third quarter, 2015 Nitrate Monitoring report. The original pre-pumping 'background' flow range of 1.31 gpm to 2.79 gpm was recalculated to range from 0.79 gpm to 1.67 gpm. This calculation is still considered conservative because the high end of the calculated range assumed an arithmetic average hydraulic conductivity of a subset of plume wells having the highest conductivities. The current nitrate pumping of approximately 2.1 gpm exceeds the high end of the recalculated 'background' range by a factor of approximately 1.3.

In addition, because the arithmetic average hydraulic conductivity of a subset of plume wells having the highest conductivities was used in recalculating the high end of the 'background' flow range, the high end is considered less representative of actual conditions than using the geometric average conductivity of all of the plume wells. Therefore, nitrate pumping likely exceeds flow through the plume by a factor greater than 1.3 times the high end of the recalculated range. Nitrate pumping is likely adequate at the present time even with reduced productivity at TW4-24. Furthermore, as the groundwater mound associated with former water delivery to the northern wildlife ponds continues to decay, hydraulic gradients and saturated thicknesses will continue to decrease, and 'background' flow will be proportionally reduced, thereby reducing the amount of pumping needed.

Second quarter, 2016 nitrate concentrations at many of the wells within and adjacent to the nitrate plume were within 20% of the values reported during the previous quarter, suggesting that variations are within the range typical for sampling and analytical error. Changes in concentration greater than 20% occurred in chloroform pumping well TW4-19; nitrate pumping wells TW4-22 and TWN-2; and non-pumping wells TWN-4, TWN-7, and TWN-18. Wells TWN-4, TWN-7, and TWN-18 are cross- to upgradient of the nitrate plume; concentrations at TWN-7 and TWN-18 are less than 2 mg/L.

TWN-4 is near nitrate pumping wells TW4-25 and TWN-2, and TWN-7 is near nitrate pumping well TWN-2. Fluctuations in concentrations at pumping wells and wells adjacent to pumping wells likely result in part from the effects of pumping as discussed in Section 4.1.1. In addition, concentrations at TWN-4 are expected to be influenced by the adjacent wildlife ponds and concentrations at TWN-7 and TWN-18 are expected to be influenced by their locations near the upgradient margin of the nitrate plume. The nitrate concentrations in wells MW-25 and MW-32 remained non-detect.

As discussed in Section 4.2.3, the nitrate concentration in chloroform pumping well TW4-19 decreased from approximately 15.7 mg/L to 1.3 mg/L causing contraction of the plume to the west. MW-27, located west of TWN-2, and TWN-18, located north of TWN-3, bound the nitrate plume to the west and north (See Figure I-1 under Tab I). In addition, the southernmost (downgradient) boundary of the plume remains between MW-30/MW-31 and MW-5/MW-11. Nitrate concentrations at MW-5 (adjacent to MW-11) and MW-11 have historically been low (< 1 mg/L) or non-detect for nitrate (See Table 5). The concentration increase from non-detect to 0.12 mg/L at MW-11 is likely due to its location immediately downgradient of the plume. MW-25, MW-26, MW-32, TW4-9, TW4-16, TW4-18, TW4-19, TW4-25, TWN-1, and TWN-4 bound the nitrate plume to the east.

Although short-term fluctuations have occurred, nitrate concentrations in MW-30 and MW-31 have been relatively stable, demonstrating that plume migration is minimal or absent. Nitrate in MW-30 decreased from 20 mg/L to 17.3 mg/L and nitrate in MW-31 decreased slightly from 18.8 mg/L to 18.6 mg/L. Based on the concentration data at MW-5, MW-11, MW-30, and MW-31, the nitrate plume is under control.

Chloride has been relatively stable at MW-30 but is generally increasing at MW-31. The apparent increase in chloride and relatively stable nitrate at MW-31 suggests a natural attenuation process that is affecting nitrate but not chloride. A likely process that would degrade nitrate but leave chloride unaffected is reduction of nitrate by pyrite. The likelihood of this process in the perched zone is discussed in HGC, December 7 2012; Investigation of Pyrite in the Perched Zone, White Mesa Uranium Mill Site, Blanding, Utah. Increases in chloride at MW-30 are also expected to eventually occur as the nitrate/chloride plume continues to move downgradient.

Nitrate mass removal by pumping and natural attenuation (expected to result primarily from pyrite oxidation/nitrate reduction) act to lower nitrate mass within the plume. Changes resulting from redistribution of nitrate within the plume are expected to result in both increases and decreases in concentrations at wells within the plume and therefore increases and decreases in mass estimates based on those concentrations, thus generating 'noise' in the mass estimates. Furthermore, because the sum of sampling and analytical error is typically about 20%, changes in the mass estimates from quarter to quarter of up to 20% could result from typical sampling and analytical error alone. Longer-term analyses of the mass estimates that minimize the impact of these quarter to quarter variations are expected to provide useful information on plume mass trends. Over the long term, nitrate mass estimates are expected to trend downward as a result of direct removal by pumping and through natural attenuation.

As specified in the CAP, once eight quarters of data were collected (starting with the first quarter of 2013), a regression trend line was to be applied to the quarterly mass estimates and evaluated. The trend line was to be updated quarterly and reevaluated as additional quarters of data were collected. As the fourth quarter of 2014 constituted the eighth quarter as specified in the CAP, the mass estimates were plotted, and a regression line was fitted to the data and evaluated. The regression line was updated this quarter as shown in Figure M.1 of Tab M. The fitted line shows a decreasing trend in the mass estimates.

During the current quarter, a total of approximately 100 lb of nitrate was removed by the chloroform pumping wells and by nitrate pumping wells TW4-22, TW4-24, TW4-25, and TWN-2. Of the 100 lb removed during the current quarter, approximately 46 lb (or 46 %) was removed by the nitrate pumping wells.

The baseline nitrate (nitrate+nitrite as N) plume mass calculated as specified in the CAP (based on second quarter, 2010 data) was approximately 43,700 lb. The mass estimate during the current quarter (28,470 lb) was smaller than the mass estimate during the previous quarter (33,080 lb) by 4,610 lb or approximately 14 %. This difference is attributable to 1) lower average nitrate concentrations within the plume and 2) slightly decreased plume area resulting from a concentration decrease at TW4-19 this quarter.

Nitrate concentrations outside the nitrate plume are greater than 10 mg/L at a few locations: TW4-10 (14.9 mg/L), TW4-12 (30.7 mg/L), TW4-26 (15.2 mg/L), TW4-27 (21.2 mg/L), and TW4-28 (29 mg/L). Concentrations at TW4-18 are also occasionally above 10 mg/L. Each of these wells is located southeast of the nitrate plume as defined in the CAP and is separated from the plume by a well or wells having nitrate concentrations that are either non-detect, or, if detected, are less than 10 mg/L. Concentrations at TW4-10, TW4-12, TW4-26, TW4-27 and TW4-28 are within 20% of last quarter's concentrations.

Since 2010, nitrate concentrations at TW4-10 and TW4-18 have been above and below 10 mg/L Concentrations were below 10 mg/L between the first quarter of 2011 and second quarter of 2013, and mostly close to or above 10 mg/L between the second quarter of 2013 and third quarter of 2015. However, concentrations at TW4-18 have been below 10 mg/L over the last three quarters. Since 2010, concentrations at nearby well TW4-5 have exceeded 10 mg/L only twice, and concentrations at nearby wells TW4-3 and TW4-9 have remained below 10 mg/L. Nitrate at TW4-5, TW4-10, and TW4-18 is associated with the chloroform plume, and is within the capture zone of the chloroform pumping system. Elevated nitrate at TW4-12, TW4-26, TW4-27, and TW4-28 is likely related to former cattle ranching operations at the site.

Increases in both nitrate and chloride concentrations at wells near the northern wildlife ponds (for example TW4-18) were anticipated as a result of reduced dilution caused by cessation of water delivery to the northern wildlife ponds. However, decreasing nitrate concentrations at TW4-10 and TW4-18 from the first through third quarters of 2014 after previously increasing trends (interrupted in the first quarter of 2014) suggested that conditions in this area had stabilized. The temporary increase in nitrate concentration at TW4-18 in the third quarter of 2015 and the generally increasing nitrate at TW4-5 and TW4-10 since the second quarter of 2015 suggest that reduced wildlife pond recharge is still impacting concentrations in downgradient wells.

EFRI and its consultants have raised the issues and potential effects associated with cessation of water delivery to the northern wildlife ponds in March, 2012 during discussions with DWMRC in March 2012 and May 2013. While past recharge from the ponds has helped limit many constituent concentrations within the chloroform and nitrate plumes by dilution, the associated groundwater mounding has increased hydraulic gradients and contributed to plume migration. Since use of the northern wildlife ponds ceased in March 2012, the reduction in recharge and decay of the associated groundwater mound was expected to increase many constituent

concentrations within the plumes while reducing hydraulic gradients and rates of plume migration.

The net impact of reduced wildlife pond recharge is expected to be beneficial even though it was also expected to result in temporarily higher concentrations until continued mass reduction via pumping and natural attenuation ultimately reduce concentrations. Temporary increases in nitrate concentrations are judged less important than reduced nitrate migration rates. The actual impacts of reduced recharge on concentrations and migration rates will be defined by continued monitoring.

Nitrate mass removal from the perched zone was increased substantially by the start-up of nitrate pumping wells TW4-22, TW4-24, TW4-25, and TWN-2 during the first quarter of 2013. Continued operation of these wells is therefore recommended. Pumping these wells, regardless of any short term fluctuations in concentrations detected at the wells, helps to reduce downgradient nitrate migration by removing nitrate mass and reducing average hydraulic gradients, thereby allowing natural attenuation to be more effective. Continued operation of the nitrate pumping system is expected to eventually reduce nitrate concentrations within the plume and to further reduce or halt downgradient nitrate migration.

8.0 ELECTRONIC DATA FILES AND FORMAT

EFRI has provided to the Director an electronic copy of all laboratory results for groundwater quality monitoring conducted under the nitrate contaminant investigation during the quarter, in Comma Separated Values ("CSV") format. A copy of the transmittal e-mail is included under Tab L.

9.0 SIGNATURE AND CERTIFICATION

This document was prepared by Energy Fuels Resources (USA) Inc. on August 16, 2016.

Energy Fuels Resources (USA) Inc.

By:

Scott Bakken

Senior Director Regulatory Affairs

Certification:

I certify, under penalty of law, that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Scott Bakken

Senior Director Regulatory Affairs Energy Fuels Resources (USA) Inc. Tables

4

Table 1
Summary of Well Sampling and Constituents for the Period

Well	Sample Collection Date	Date of Lab Report
Piezometer 01	5/17/2016	6/3/2016
Piezometer 02	5/17/2016	6/3/2016
Piezometer 03A	5/17/2016	6/3/2016
TWN-01	5/17/2016	6/3/2016
TWN-02	5/17/2016	6/3/2016
TWN-03	5/18/2016	6/3/2016
TWN-04	5/17/2016	6/3/2016
TWN-07	5/18/2016	6/3/2016
TWN-07R	5/17/2016	6/3/2016
TWN-18	5/17/2016	6/3/2016
TW4-22	5/23/2016	6/15/2016
TW4-24	5/23/2016	6/15/2016
TW4-25	5/23/2016	6/15/2016
TWN-60	5/18/2016	6/3/2016
TW4-60	6/8/2016	6/21/2016
TWN-65	5/17/2016	6/3/2016

Note: All wells were sampled for Nitrate and Chloride.

TWN-60 is a DI Field Blank.

TWN-65 is a duplicate of TWN-18

TW4-60 is the ehloroform program DI Field Blank.

Continuously pumped well.

Table 2 Nitrate Mass Removal Per Well Per Quarter

Quarter	MW-4 (lbs.)	MW-26 (lbs.)	TW4-19 (lbs.)	TW4-20 (lbs.)	TW4-4 (lbs.)	TW4-22 (lbs.)	TW4-24 (lbs.)	TW4-25 (lbs.)	TWN-02 (lbs.)	TW4-01 (lbs.)	TW4-02 (lbs.)	TW4-11 (lbs.)	TW4-21 (lbs.)	TW4-37 (lbs.)	Quarter Totals (lbs.)
Q3 2010	3.2	0.3	5.8	1.7	4.7	NA	15.69								
Q4 2010	3.8	0.4	17.3	1.4	5.1	NA	27.97								
Q1 2011	2.9	0.2	64.5	1.4	4.3	NA	73.30								
Q2 2011	3.5	0.1	15.9	2.7	4.7	NA	27.01								
Q3 2011	3.5	0.5	3.5	3.9	5.4	NA	16.82								
Q4 2011	3.8	0.8	6.2	2.5	6.4	NA	19.71								
Q1 2012	3.6	0.4	0.7	5.0	6.0	NA	15.86								
Q2 2012	3.7	0.6	3.4	2.1	5.2	NA	15.03								
Q3 2012	3.8	0.5	3.6	2.0	4.7	NA	14.67								
Q4 2012	3.2	0.4	5.4	1.8	4.2	NA	14.92								
Q1 2013	2.5	0.4	14.1	1.4	3.6	8.1	43.4	7.5	14.8	NA	NA	NA	NA	NA	95.73
Q2 2013	2.5	0.4	5.6	1.6	3.4	10.7	37.1	6.4	23.9	NA	NA	NA	NA	NA	91.71
Q3 2013	3.0	0.4	48.4	1.4	3.8	6.3	72.8	6.9	33.4	NA	NA	NA	NA	NA	176.53
Q4 2013	3.1	0.3	15.8	1.6	3.9	9.4	75.2	6.4	46.3	NA	NA	NA	NA	NA	162.07
Q1 2014	2.7	0.4	4.1	1.2	3.6	11.2	60.4	2.3	17.2	NA	NA	NA	NA	NA	103.14
Q2 2014	2.4	0.3	3.3	0.9	3.0	9.5	63.4	1.3	17.8	NA	NA	NA	NA	NA	101.87
Q3 2014	2.3	0.1	4.1	0.6	3.1	8.5	56.2	1.6	16.4	NA	NA	NA	NA	NA	92.99
Q4 2014	2.7	0.2	7.8	1.0	3.8	11.0	53.2	0.9	28.0	NA	NA	NA	NA	NA	108.57
Q1 2015	3.7	0.5	4.3	1.3	2.4	12.7	26.7	8.6	19.2	1.45	1.07	0.72	NA	NA	82.61
Q2 2015	1.3	0.2	0.6	0.9	3.6	9.1	16.6	0.9	21.4	1.22	0.79	0.37	3.4	8.6	68.86
Q3 2015	3.6	0.3	11.3	1.4	3.5	13.3	14.0	1.7	20.2	1.24	0.68	0.29	15.4	31.9	118.63
Q4 2015	3.7	0.2	10.0	0.8	3.1	11.1	26.6	1.7	17.5	0.3	0.9	0.3	16.1	32.3	124.50
Q1 2016	3.9	0.23	15.28	1.23	3.21	6.36	24.30	0.81	34.33	0.02	0.93	0.22	15.29	26.45	132.55
Q2 2016	3.7	0.21	1.31	1.48	3.36	12.92	13.17	1.01	19.24	0.02	1.15	0.25	14.46	27.76	99.98
Well Totals (pounds)	76.03	8.54	272.31	41.48	98.01	140.21	583.04	48.09	329.59	4.22	5.56	2.10	64.56	126.97	1800.70

.

Table 3 Well Pumping Rates and Volumes

Pumping	Volume of Water	
Well	Pumped During the	
Name	Quarter (gals)	Average Pump Rate (gpm)
MW-4	96540.5	4.4
MW-26	22105.7	8.5
TW4-19	123768.0	18.0
TW4-20	15818.3	7.3
TW4-4	61378.0	10.9
TWN-2	50783.0	18.5
TW4-22	26506.3	17.1
TW4-24	65233.6	16.0
TW4-25	125606.0	14.8
TW4-01	19588.2	15.8
TW4-02	20624.0	16.7
TW4-11	3760.4	16.3
TW4-21	132248.7	16.0
TW4-37	119241.2	17.0

Table 4
Table 4 Quarterly Calculation of Nitrate Removed and Total Volume of Water Pumped

	ii.			MW-4							MW-26			
Quarter	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)
Calculations and Data Origination	pumped for the quarter from the Flow Meter data	Concentration from the analytical data	Concentration in mg/LX1000 to convert to ug/L	Total pumped gallons/3.785 to conver to liters	Concentration in ug/L X total liters	Total ug/1000000 to convert to grams	Total grams/453. 592 to convert to pounds							
Q3 2010	79859.1	4.80	4800	302266.7	1450880129	1450.9	3.20	63850.0	0.60	600	241672.3	145003350	145	0.32
Q4 2010	90042.2	5.00	5000	340809.7	1704048635	1704.0	3.76	60180.0	0.70	700	227781.3	159446910	159	0.35
Q1 2011	76247.6	4.60	4600	288597.2	1327546964	1327.5	2.93	55130.0	0.50	500	208667.1	104333525	104	0.23
Q2 2011	85849.3	4.90	4900	324939.6	1592204042	1592.2	3.51	55800.6	0.30	300	211205.3	63361581	63	0.14
Q3 2011	85327.7	4.90	4900	322965.3	1582530188	1582.5	3.49	65618.0	0,90	900	248364.1	223527717	224	0.49
Q4 2011	89735.0	5.10	5100	339647.0	1732199573	1732.2	3.82	50191.3	2.00	2000	189974.1	379948141	380	0.84
Q1 2012	90376.4	4.80	4800	342074.7	1641958435	1642.0	3.62	31440.1	1.70	1700	119000.8	202301323	202	0.45
Q2 2012	90916.5	4.90	4900	344118.8	1686181940	1686.2	3.72	26701.2	2.50	2500	101064.1	252660294	253	0.56
Q3 2012	91607.0	5.00	5000	346732.5	1733662475	1733.7	3.82	25246.0	2,60	2600	95556.1	248445886	248	0.55
Q4 2012	78840.0	4.80	4800	298409.4	1432365120	1432.4	3.16	30797.0	1.46	1460	116566.6	170187302	170	0.38
Q1 2013	62943.7	4.78	4780	238241.9	1138796304	1138.8	2.51	22650.7	2.27	2270	85732.9	194613682	195	0.43
Q2 2013	71187.3	4.22	4220	269443.9	1137053387	1137,1	2.51	25343,4	2.11	2110	95924.8	202401263	202	0.45
Q3 2013	72898.8	4.89	4890	275922.0	1349258375	1349,3	2.97	25763.0	1.98	1980	97513.0	193075651	193	0.43
Q4 2013	70340.4	5.25	5250	266238.4	1397751674	1397.8	3.08	24207.6	1,38	1380	91625.8	126443557	126	0.28
Q1 2014	69833.8	4.70	4700	264320.9	1242308385	1242,3	2,74	23263.1	2.12	2120	88050.8	186667767	187	0.41
Q2 2014	71934.9	4.08	4080	272273.6	1110876274	1110.9	2.45	23757.5	1.42	1420	89922.1	127689435	128	0.28
Q3 2014	74788.2	3.70	3700	283073.3	1047371347	1047,4	2,31	24062.4	0.70	700	91076.2	63753329	64	0.14
Q4 2014	63093.0	5.07	5070	238807.0	1210751515	1210.8	2,67	21875.8	0.93	934	82799.9	77335109	77	0.17
Q1 2015	76454.3	5.75	5750	289379.5	1663932272	1663.9	3.67	24004.9	2.68	2680	90858.5	243500905	244	0.54
Q2 2015	60714.7	2.53	2530	229805.1	581407002.9	581.4	1.28	27804.6	0.85	845	105240.4	88928147	89	0.20
Q3 2015	89520.8	4.79	4790	338836.2	1623025532	1623.0	3.58	21042.0	1.75	1750	79644.0	139376948	139	0.31
Q4 2015	99633.4	4.43	4430	377112.4	1670608016	1670.6	3.68	19355.6	1.11	1110	73260,9	81319650	81	0.18
Q1 2016	90882.1	5.15	5150	343988.7	1771542055	1771.5	3.91	19150.8	1.45	1450	72485.8	105104378	105	0.23
Q2 2016	96540.5	4.54	4540	365405.8	1658942298	1658.9	3.66	22105.7	1.12	1120	83670.1	93710483	94	0.21

2010 1929566.65 76.03 789341.3 8.54

Table 4
Table 4 Quarterly Calculation of Nitrate Removed and Total Volume of Water Pumped

				TW4-19							TW4-20			
Quarter	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)
Calculations and Data Origination														
Q3 2010	116899.2	5.90	5900	442463.5	2.611E+09	2611	5.76	39098.3	5.30	5300	147987.1	784331447	784	1.73
Q4 2010	767970.5	2.70	2700	2906768.3	7.848E+09	7848	17.30	36752.5	4.60	4600	139108.2	639897778	640	1.41
Q1 2011	454607.9	17.00	17000	1720690.9	2.925E+10	29252	64.49	37187.5	4.40	4400	140754.7	619320625	619	1,37
Q2 2011	159238.9	12.00	12000	602719.2	7.233E+09	7233	15.95	67907.7	4.80	4800	257030.6	1.234E+09	1234	2.72
Q3 2011	141542.6	3.00	3000	535738.7	1.607E+09	1607	3.54	72311.2	6.50	6500	273697.9	1.779E+09	1779	3,92
Q4 2011	147647.2	5.00	5000	558844.7	2.794E+09	2794	6.16	72089.3	4.20	4200	272858.0	1.146E+09	1146	2.53
Q1 2012	148747.0	0.60	600	563007.4	337804437	338	0.74	76306.0	7.90	7900	288818.2	2.282E+09	2282	5.03
Q2 2012	172082.0	2.40	2400	651330.5	1,563E+09	1563	3.45	22956.4	11.00	11000	86890.1	955790963	956	2.11
Q3 2012	171345.0	2.50	2500	648540.8	1.621E+09	1621	3.57	22025.0	10.80	10800	83364.6	900337950	900	1.98
Q4 2012	156653.0	4.10	4100	592931.6	2.431E+09	2431	5.36	20114.0	11.00	11000	76131.5	837446390	837	1.85
Q1 2013	210908.0	7.99	7990	798286.8	6.378E+09	6378	14.06	18177.0	9,07	9070	68799.9	624015501	624	1.38
Q2 2013	226224.0	2.95	2950	856257.8	2.526E+09	2526	5.57	20252.4	9.76	9760	76655.3	748156060	748	1.65
Q3 2013	329460.1	17.60	17600	1247006.5	2.195E+10	21947	48.39	19731.0	8.65	8650	74681.8	645997873	646	1.42
Q4 2013	403974.0	4.70	4700	1529041.6	7.186E+09	7186	15.84	19280.2	9.64	9640	72975.6	703484369	703	1.55
Q1 2014	304851.0	1.62	1620	1153861.0	1.869E+09	1869	4.12	18781.6	7.56	7560	71088.4	537427971	537	1,18
Q2 2014	297660.0	1.34	1340	1126643.1	1.51E+09	1510	3.33	18462.4	5.95	5950	69880.2	415787095	416	0.92
Q3 2014	309742.0	1.60	1600	1172373.5	1.876E+09	1876	4.14	17237.9	4.30	4300	65245.5	280555441	281	0.62
Q4 2014	198331.0	4.72	4720	750682.8	3.543E+09	3543	7.81	16341.8	7.67	7670	61853.7	474417979	474	1.05
Q1 2015	60553.0	8.56	8560	229193.1	1.962E+09	1962	4.33	15744.7	9.80	9800	59593.7	584018157	584	1,29
Q2 2015	75102.8	0.92	916	284264.1	260385914	260	0.57	18754.1	5.76	5760	70984.3	408869387	409	0.90
Q3 2015	116503.9	11.60	11600	440967.3	5.115E+09	5115	11.28	17657.3	9.27	9270	66832.9	619540802	620	1.37
Q4 2015	112767.7	10,6	10600	426825.7	4.524E+09	4524	9.97	15547.4	6.23	6230	58846.9	366616243	367	0.81
Q1 2016	116597.0	15.7	15700	441319.6	6.929E+09	6929	15.28	14353.5	10.3	10300	54328.0	559578374	560	1.23
Q2 2016	123768.0	1.27	1270	468461.9	594946588	595	1,31	15818.3	11.2	11200	59872.3	670569374	671	1.48

2010 5323175.8 272.31 712887.5 41.48

Table 4

Quarterly Calculation of Nitrate Removed and Total Volume of Water Pumped

				TW4-4			11				TW4-22			
Quarter	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds
Calculations and Data Origination														
Q3 2010	76916.8	7.30	7300.00	291130.1	2.1E+09	2125.25	4.69	NA	NA	NA	NA	NA	NA	NA
Q4 2010	86872.1	7.10	7100.00	328810.9	2.3E+09	2334.56	5.15	NA	NA	NA	NA.	NA	NA	NA
Q1 2011	73360.0	7.00	7000.00	277667.6	1.9E+09	1943.67	4.29	NA	NA	NA	NA	NA	NA	NA
Q2 2011	80334.6	7.00	7000.00	304066.5	2.1E+09	2128.47	4.69	NA	NA.	NA	NA	NA	NA	NA
Q3 2011	97535.0	6.60	6600.00	369170.0	2.4E+09	2436.52	5.37	NA	NA.	NA.	NA	NA	NA	NA
Q4 2011	109043.5	7.00	7000.00	412729.6	2.9E+09	2889.11	6.37	NA	NA.	NA	NA	NA	NA	NA
Q1 2012	101616.8	7.10	7100.00	384619.6	2.7E+09	2730.80	6.02	NA	NA	NA	NA	NA	NA	NA
Q2 2012	87759.1	7.10	7100.00	332168.2	2.4E+09	2358.39	5.20	NA	NA	NA	NA	NA	NA	NA
Q3 2012	80006.0	7.10	7100.00	302822.7	2,2E+09	2150.04	4,74	NA	NA	NA	NA	NA	NA	NA
Q4 2012	71596.0	7.00	7000.00	270990.9	1.9E+09	1896.94	4.18	NA	NA	NA	NA	NA	NA	NA
Q1 2013	58716.8	7.36	7360.00	222243.1	1.6E+09	1635.71	3.61	16677.4	58.00	58000.0	63124.0	3.7E+09	3661,2	8.07
Q2 2013	65603.4	6.30	6300.00	248308.9	1.6E+09	1564.35	3.45	25523.2	50.20	50200.0	96605.3	4.8E+09	4849.6	10,69
Q3 2013	63515.4	7.22	7220.00	240405.8	1.7E+09	1735.73	3,83	25592.9	29.70	29700.0	96869.1	2.9E+09	2877.0	6.34
Q4 2013	60233.6	7.84	7840.00	227984.2	1.8E+09	1787.40	3.94	24952.2	45.20	45200.0	94444.1	4.3E+09	4268.9	9.41
Q1 2014	58992.9	7.28	7280.00	223288.1	1.6E+09	1625.54	3.58	24532.0	54.60	54600.0	92853.6	5.1E+09	5069.8	11.18
Q2 2014	60235.3	5.91	5910.00	227990.6	1.3E+09	1347.42	2.97	24193.9	47.20	47200.0	91573.9	4.3E+09	4322.3	9.53
Q3 2014	69229.4	5,30	5300.00	262033.3	1.4E+09	1388.78	3.06	24610.9	41.50	41500.0	93152.3	3.9E+09	3865.8	8.52
Q4 2014	64422.6	7.02	7020.00	243839.5	1.7E+09	1711.75	3.77	23956.9	54.90	54900.0	90676,9	5.0E+09	4978.2	10.97
Q1 2015	36941.3	7.70	7700.00	139822.8	1.1E+09	1076.64	2.37	22046.9	69.20	69200.0	83447.5	5.8E+09	5774.6	12.73
Q2 2015	68162.8	6.33	6330.00	257996.2	1.6E+09	1633.12	3.60	23191.6	47.10	47100.0	87780.2	4.1E+09	4134.4	9.11
Q3 2015	64333.0	6.45	6450.00	243500.4	1.6E+09	1570.58	3.46	24619.9	64.70	64700.0	93186.3	6.0E+09	6029.2	13.29
Q4 2015	59235.1	6.27	6270.00	224204.9	1.4E+09	1405.76	3.10	23657.6	56.10	56100.0	89544.0	5.0E+09	5023.4	11.07
Q1 2016	57274.0	6.71	6710.00	216782.1	1.5E+09	1454.61	3.21	24517.8	31.10	31100.0	92799.9	2.9E+09	2886.1	6.36
Q2 2016	61378.0	6.56	6560.00	232315.7	1.5E+09	1523.99	3,36	26506,3	58.40	58400.0	100326.3	5.9E+09	5859.1	12.92

2010 1713313.5 98.01 334579.5 140.21

Table 4

Quarterly Calculation of Nitrate Removed and Total Volume of Water Pumped

				TW4-24				100			TW4-25			
Quarter	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)
Calculations and Data Origination														
Q3 2010	NA	NA	NA	NA	NA	NA NA	NA .	NA	NA	NA.	NA	NA	NA.	NA
Q4 2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA
Q1 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA.
Q2 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q3 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA.	NA
Q4 2011	NA	NA	NA	NA	NA	. NA	NA .	NA	NA	NA	. NA	NA	NA	NA
Q1 2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA.
Q2 2012	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA
Q3 2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2012	NA	NA	NA	NA	NA	NA	NA	NA .	NA	NA	NA	NA	NA	NA
Q1 2013	144842.6	35.90	35900,0	548229.2	2.0E+10	19681.4	43.39	99369.9	9.00	9000.0	376115.1	3.4E+09	3385.0	7.46
Q2 2013	187509.3	23.70	23700.0	709722.7	1.7E+10	16820.4	37.08	147310.4	5.24	5240.0	557569.9	2.9E+09	2921.7	6.44
Q3 2013	267703.5	32.60	32600.0	1013257.7	3.3E+10	33032,2	72.82	145840.9	5.69	5690.0	552007.8	3.1E+09	3140.9	6.92
Q4 2013	260555.3	34.60	34600.0	986201.8	3.4E+10	34122.6	75.23	126576.5	6.10	6100.0	479092.1	2.9E+09	2922.5	6.44
Q1 2014	229063.9	31.60	31600.0	867006.9	2.7E+10	27397.4	60.40	129979.2	2.16	2160.0	491971.3	1.1E+09	1062.7	2.34
Q2 2014	216984.1	35,00	35000.0	821284.8	2.9E+10	28745.0	63.37	124829.8	1.21	1210.0	472480.8	5.7E+08	571.7	1,26
Q3 2014	213652.5	31.50	31500.0	808674.7	2.5E+10	25473.3	56.16	119663.9	1.60	1600.0	452927.9	7.2E+08	724.7	1.60
Q4 2014	178468.7	35.70	35700.0	675504.0	2.4E+10	24115.5	53.17	107416.1	1.03	1030.0	406569.9	4.2E+08	418.8	0.92
Q1 2015	92449.3	34.60	34600.0	349920.6	1.2E+10	12107.3	26.69	71452.4	14.40	14400.0	270447.3	3.9E+09	3894.4	8.59
Q2 2015	62664.2	31.80	31800.0	237184.0	7.5E+09	7542.5	16.63	91985.3	1.14	1140.0	348164.4	4.0E+08	396.9	0.88
Q3 2015	66313.2	25.30	25300.0	250995.5	6.4E+09	6350.2	14.00	124137.1	1.63	1630.0	469858.9	7.7E+08	765.9	1.69
Q4 2015	107799.1	29.60	29600.0	408019.6	1.2E+10	12077.4	26.63	116420.1	1.78	1780.0	440650.1	7.8E+08	784.4	1.73
Q1 2016	100063.2	29.10	29100.0	378739.2	1.1E+10	11021.3	24.30	115483.2	0.84	837.0	437103.9	3.7E+08	365.9	0.81
Q2 2016	65233.6	24.20	24200.0	246909.2	6.0E+09	5975.2	13.17	125606.0	0.96	959.0	475418.7	4.6E+08	455.9	1.01

2010 2193302.5 583.04 1646070.8 48.09

Table 4

Quarterly Calculation of Nitrate Removed and Total Volume of Water Pumped

				TWN-02				The state of			TW4-01	P =	VII. (24.5)	
Quarter	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds
Calculations and Data Origination														
Q3 2010	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA NA	NA	NA	NA
Q4 2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q1 2011	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA.	NA	NA	NA
Q2 2011	NA	NA	NA	NA	NA.	NA	NA.	NA	NA	NA	NA	NA	NA	NA
Q3 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA.	NA
Q1 2012	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA
Q2 2012	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA.	NA	NA	NA
Q3 2012	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA NA	NA	NA	NA
Q4 2012	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA
Q1 2013	31009.4	57.30	57300.0	117370.6	6.7E+09	6725.3	14.83	NA	NA	NA	NA NA	NA	NA	NA
Q2 2013	49579.3	57.70	57700.0	187657.7	1.1E+10	10827.8	23,87	NA.	NA.	NA	NA	NA	NA	NA.
Q3 2013	50036.5	80.00	80000.0	189388.2	1.5E+10	15151.1	33.40	NA.	NA	NA	NA	NA	NA	NA
Q4 2013	49979,9	111.00	111000.0	189173.9	2.1E+10	20998.3	46.29	NA.	NA	NA	NA	NA	NA	NA.
Q1 2014	48320.4	42.60	42600.0	182892.7	7.8E+09	7791.2	17.18	NA	NA	NA	NA	NA	NA	NA
Q2 2014	47611.9	44.70	44700.0	180211.0	8.1E+09	8055.4	17.76	NA.	NA	NA	NA	NA	NA	NA
Q3 2014	46927,2	42.00	42000.0	177619.5	7.5E+09	7460.0	16.45	NA.	NA	NA	NA.	NA	NA	NA
Q4 2014	47585.6	70.60	70600.0	180111.5	1.3E+10	12715.9	28.03	NA	NA	NA	NA.	NA	NA	NA
Q1 2015	47262.2	48.60	48600.0	178887.4	8.7E+09	8693.9	19.17	24569.2	7.06	7060.0	92994.4	6.6E+08	656.5	1.45
Q2 2015	48497.3	52.80	52800.0	183562.3	9.7E+09	9692.1	21.37	23989.9	6.07	6070.0	90801.8	5.5E+08	551.2	1.22
Q3 2015	48617,4	49.70	49700.0	184016.9	9.1E+09	9145.6	20,16	23652.0	6.3	6280.0	89522.8	562203309.6	562.2	1.2
Q4 2015	46754.1	44.90	44900.0	176964.3	7.9E+09	7945.7	17.52	20764.3	1.55	1550.0	78592.9	1.2E+08	121.8	0.27
Q1 2016	47670.2	86.30	86300.0	180431.7	1.6E+10	15571.3	34.33	19255.6	0.15	148.0	72882.4	1.1E+07	10.8	0.02
Q2 2016	50783.0	45.40	45400.0	192213.7	8.7E+09	8726.5	19.24	19588.2	0.14	138.0	74141.3	1.0E+07	10.2	0.02

2010 660634.4 329.59 131819.2 4.22

Table 4

Quarterly Calculation of Nitrate Removed and Total Volume of Water Pumped

				TW4-02	2						TW4-11			
Quarter	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)
Calculations and Data Origination														
Q3 2010	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA
Q4 2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q1 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q2 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q3 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q1 2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q2 2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q3 2012	NA	NA	NA	NA .	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q1 2013	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA
Q2 2013	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q3 2013	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2013	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA
Q1 2014	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA
Q2 2014	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q3 2014	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Q4 2014	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA
Q1 2015	24156.7	5.32	5320.0	91433.1	4.9E+08	486.4	1.07	9898.7	8.72	8720.0	37466.6	3.3E+08	326.7	0.72
Q2 2015	22029.9	4.30	4300.0	83383.2	3.6E+08	358.5	0.79	5243.3	8.48	8480.0	19845.9	1.7E+08	168.3	0.37
Q3 2015	21586.9	3.8	3760.0	81706.4	307216126.0	307.2	0.7	3584.4	9.6	9610.0	13567.0	130378427.9	130.4	0,3
Q4 2015	21769.8	5.18	5180.0	82398.7	4.3E+08	426.8	0.94	4110.3	7.50	7500.0	15557.5	1.2E+08	116.7	0.26
Q1 2016	20944.6	5.30	5300.0	79275.3	4.2E+08	420.2	0.93	3676.2	7.13	7130.0	13914.4	9.9E+07	99.2	0.22
Q2 2016	20624.0	6.67	6670,0	78061.8	5.2E+08	520.7	1.15	3760.4	7.81	7810.0	14233.1	1.1E+08	111.2	0.25

2010 131111.9 5.56 30273.3 2,10

Table 4

Quarterly Calculation of Nitrate Removed and Total Volume of Water Pumped

				TW4-2	1						TW4-	37			
Quarter	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)	Total Pumped (gal)	Conc (mg/L)	Conc (ug/L)	Total Pumped (liters)	Total (ug)	Total (grams)	Total (pounds)	Removed by Ali Wells
Calculations and Data Origination															
Q3 2010	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	15.69
Q4 2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	27.97
Q1 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	73.30
Q2 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA .	NA	NA	NA	27.01
Q3 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	16.82
Q4 2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	19.71
Q1 2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	15.86
Q2 2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	15.03
Q3 2012	NA	NA	NA	NA.	NA	NA	NA.	NA	NA	NA .	NA	NA	NA	NA	14.67
Q4 2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	14.92
Q1 2013	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	95.73
Q2 2013	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	91.71
Q3 2013	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	176.53
Q4 2013	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	162.07
Q1 2014	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	103.14
Q2 2014	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	101.87
Q3 2014	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	92.99
Q4 2014	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	108.57
Q1 2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA .	NA	82.61
Q2 2015	30743.7	13.1	13100.0	116364.9	1,5E+09	1524.4	3.4	29206.0	35.2	35200.0	110544.7	3,9E+09	3891.2	8.6	68.86
Q3 2015	125285.4	14.7	14700.0	474205.2	6970817013.3	6970.8	15.4	118063.9	32.4	32400.0	446871.9	14478648312.6	14478.6	31.9	118.63
Q4 2015	134774.9	14.30	14300.0	510123.0	7.3E+09	7294.8	16,08	111737.5	34.60	34600.0	422926.4	1.5E+10	14633.3	32.26	124.50
Q1 2016	125513.3	14.60	14600.0	475067.8	6.9E+09	6936.0	15.29	111591.0	28.40	28400.0	422371.9	1.2E+10	11995.4	26.45	132.55
Q2 2016	132248.7	13.10	13100.0	500561.3	6.6E+09	6557.4	14.46	119241.2	27.90	27900.0	451327.9	1.3E+10	12592.0	27.76	99.98

2010 548566.0 64.56 489839.6 126.97 1800.70

Table 5
Nitrate Data Over Time for MW-30, MW-31, MW-5, and MW-11

	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2
Location	2010	2010	2010	2011	2011	2011	2011	2012	2012	2012	2012	2013	2013	2013	2013	2014	2014	2014	2014	2015	2015	2015	2015	2016	2016
MW-30	15.8	15	16	16	17	16	16	17	16	17	18.5	21.4	18.8	17.6	19.5	18.4	19.4	16.8	16.2	14.9	17.0	17.9	16.3	20.0	17.3
MW-31	22.5	21	20	21	22	21	21	21	20	21	23.6	19.3	23.8	21.7	23.9	20.6	23.1	18.9	20.9	18.7	19.0	19.9	18.4	18.8	18.6
MW-5	ND	NS	0.2	NS	0.2	NS	0.2	NS	0.1	NS	ND	NS	ND	NS	0.279	NS	ND	NS	0.21	NS	0.142	NS	0.118	NS	0.156
MW-11	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.117														

ND = Not detected NS = Not Sampled

TABLE 6
Slug Test Results
(Using KGS Solution and Automatically Logged Data)

Well	K (cm/s)	K (ft/day)
MW-30	1.0E-04	0.28
MW-31	7.1E-05	0.20
TW4-22	1.3E-04	0.36
TW4-24	1.6E-04	0.45
TW4-25	5.8E-05	0.16
TWN-2	1.5E-05	0.042
TWN-3	8.6E-06	0.024
	Average 1	0.22
	Average 2	0.15
	Average 3	0.32
	Average 4	0.31

Notes:

Average 1 = arithemetic average of all wells

Average 2 = geometric average of all wells

Average 3 = arithemetic average of MW-30, MW-31, TW4-22, and TW4-24

Average 4 = geometric average of MW-30, MW-31, TW4-22, and TW4-24

cm/s = centimeters per second

ft/day = feet per day

K = hydraulic conductivity

KGS = KGS Unconfined Slug Test Solution in Aqtesolve TM .

TABLE 7
Pre-Pumping Saturated Thicknesses

Well	Depth to Brushy Basin (ft)	Depth to Water Fourth Quarter, 2012 (ft)	Saturated Thickness Above Brushy Basin (ft)
TW4-22	112	53	58
TW4-24	110	55	55

Notes:

ft = feet

TABLE 8
Pre-Pumping Hydraulic Gradients and Flow Calculations

Pathline Boundaries	Path Length (ft)	Head Change (ft)	Hydraulic Gradient (ft/ft)
TW4-25 to MW-31	2060	48	0.023
TWN-2 to MW-30	2450 67		0.027
		average	0.025
		1 min flow (gpm)	1.31
		2 max flow (gpm)	2.79

Notes:

ft = feet

ft/ft = feet per foot

gpm = gallons per minute

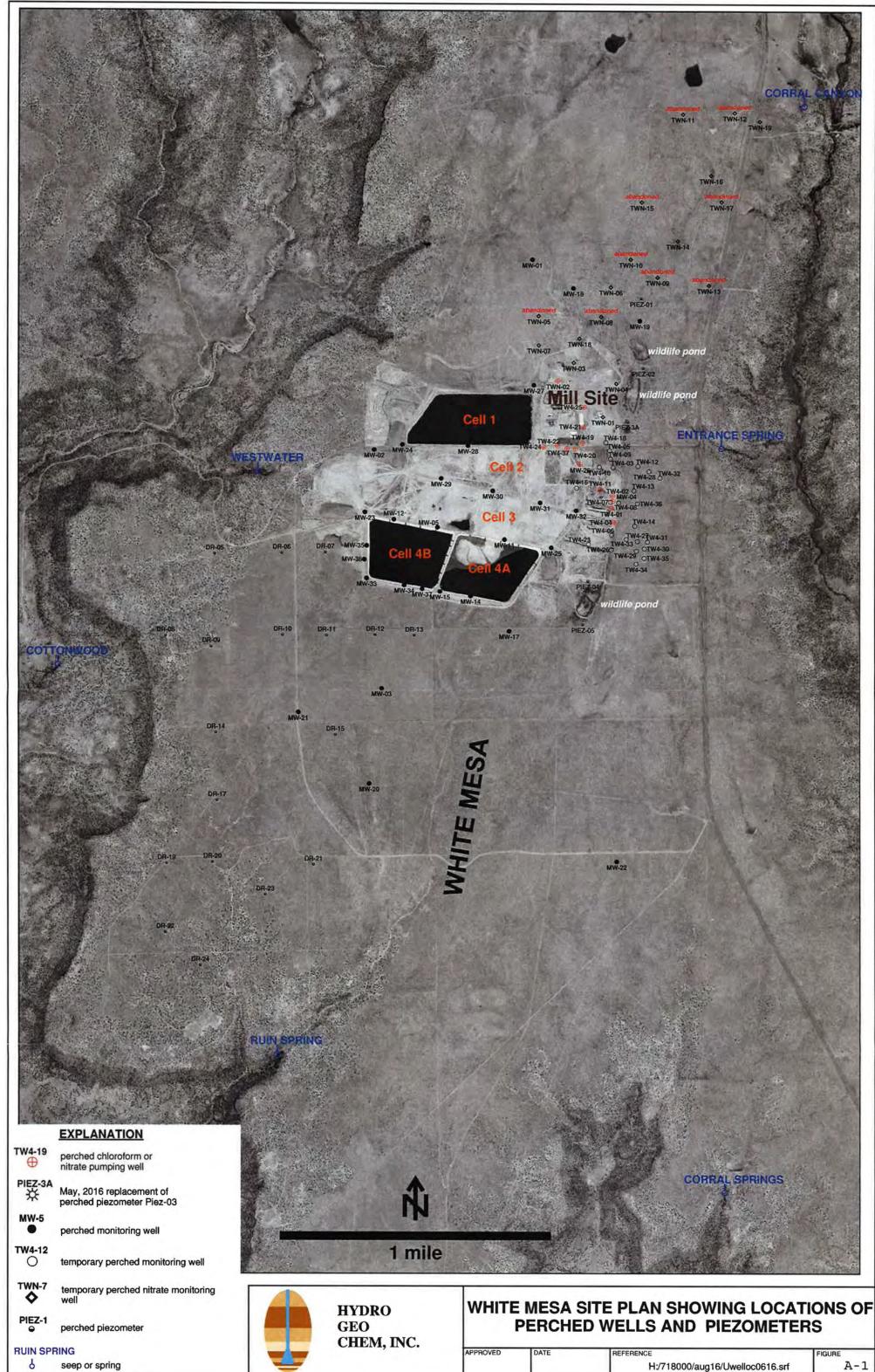
¹ assumes width = 1,200 ft; saturated thickness = 56 ft; K = 0.15 ft/day; and gradient = 0.025 ft/ft

² assumes width = 1,200 ft; saturated thickness = 56 ft; K = 0.32 ft/day; and gradient = 0.025 ft/ft

Table 9
*Recalculated Background Flow

	Background Flow (gpm)	*Recalculated Background Flow (gpm)
minimum	1.31	0.79
maximum	2.79	1.67

^{*} recalculated based on reduced widlife pond recharge as presented in the third quarter, 2015 Nitrate Monitoring Report


gpm = gallons per minute

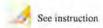
INDEX OF TABS

Tab A	Site Plan and Perched Well Locations White Mesa Site
Tab B	Order of Sampling and Field Data Worksheets
Tab C	Kriged Current Quarter Groundwater Contour Map, Capture Zone Map, Capture Zone Details Map, and Weekly, Monthly and Quarterly Depth to Water Data
Tab D	Kriged Previous Quarter Groundwater Contour Map
Tab E	Hydrographs of Groundwater Elevations Over Time for Nitrate Monitoring Wells
Tab F	Depths to Groundwater and Elevations Over Time for Nitrate Monitoring Wells
Tab G	Laboratory Analytical Reports
Tab H	Quality Assurance and Data Validation Tables
	 H-1 Field Data QA/QC Evaluation H-2 Holding Time Evaluation H-3 Analytical Method Check H-4 Reporting Limit Evaluation H-5 QA/QC Evaluation for Sample Duplicates H-6 QC Control Limits for Analyses and Blanks H-7 Receipt Temperature Evaluation H-8 Rinsate Evaluation
Tab I	Kriged Current Quarter Isoconcentration Maps
Tab J	Analyte Concentration Data Over Time
Tab K	Concentration Trend Graphs
Tab L	CSV Transmittal Letter
Tab M	Residual Mass Estimate Analysis Figure

Tab A

Site Plan and Perched Well Locations White Mesa Site

seep or spring


A-1

$\label{eq:TabB} \mbox{Tab B}$ Order of Sampling and Field Data Worksheets

Nitrate Order 2nd Quarter 2016

	Nitrate Mg/L Previous	Nitrate !	Samples			F	tinsate Samp	oles
Name	Qrt.	Date/Purge	sample	Depth	Total Depth	Name	Date	Sample
TWN-7	0.240	5/18/16	0757		105	TWN-7R	5/17/16	0723
TWN-18	0.648	5/17/16	0835		145	TWN-18R		
TWN-1	1.51	5/17/16	0911		112.5	TWN-1R		
WN-4	2.02	5/17/16	0946		125.7	TWN-4R		
TWN-3	16.8	5/18/16	0805		96	TWN-3R		
WN-2	86.3	5/17/16	1310		96	TWN-2R		
Ouplicate of I	8	5/17/16	0835					
DI Sample	60	5/18/16	1345					
Piez 1	8.31	5/17/16	1331					
Piez 2 Piez 3 A	0.615 2.24	5/17/16	1317			Samplers;	-	

Description of Sampling Event: Znd Quarter Nitro	
Location (well name): Piez-Ol	Sampler Name and initials: Tanner Hollidas/77
Field Sample ID Piez-01_05172016	
Date and Time for Purging 5/17/2016 and	Sampling (if different)
Well Purging Equip Used: Dpump or bailer W	ell Pump (if other than Bennet)
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarterly Nitrate Prev. V	Vell Sampled in Sampling Event Piez-OZ
pH Buffer 7.0 7.0 pH	Buffer 4.0 4.0
Specific Conductance 1000 µMHOS/ cm	Well Depth(0.01ft):
Depth to Water Before Purging 65.10 Casing	Volume (V) 4" Well: 0 (.653h) 3" Well: 0 (.367h)
Weather Cond. Sunny	Ext'l Amb. Temp. °C (prior sampling event) 19°
Time 1330 Gal. Purged 0	Time Gal. Purged
Conductance 2116 pH 6.81	Conductance pH
Temp. °C	Temp. °C
Redox Potential Eh (mV) 403	Redox Potential Eh (mV)
Turbidity (NTU) 5.8	Turbidity (NTU)
Time Gal. Purged	Time Gal. Purged
Conductance pH	Conductance pH
Temp. °C	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)

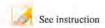
Flow Rate (Q), in gpm. S/60 = 0 Number of casing volume			T = 2V/Q = than two)	0	casing	volumes (2V)		
If well evacuated to dryne				D	_			
Name of Certified Analyti		e Taken	Sample Vol (indicate	AWAL	ered		Preserva	ative Added
Type of Sample			if other than as	N/	NT.	Preservative Type	- Nr.	NT.
IOC.	Y	N	specified below) 3x40 ml	Y	N	HCL	Y	N
/OCs Nutrients	10		100 ml		1	H2SO4	1	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha	1 1		1,000 ml		ä	HNO3		
Other (specify)			Sample volume		ш	HIVO3		ш
other (specify)	E		Sample volume		阿			29
Chloride						If preservative is used Type and Quantity of		ive:
Final Depth 65,75		Sample 7	Time 133)			See	instructio	n
Onlinent	27 Tai	mer an	d Garrin present	to coll	ect s	amples.		

White Mesa Mill Field Data Worksheet for Groundwater

Description of Sampling Event: Znd Quarter Witre	
	Sampler Name
Location (well name): Piez-02	and initials: Tanner Holliday HH
Field Sample ID Piez-02_05172016	
Date and Time for Purging 5/17/2016 and	Sampling (if different)
Well Purging Equip Used: pump or bailer W	Vell Pump (if other than Bennet)
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarterly Nitrate Prev. V	Vell Sampled in Sampling Event TWW-02
pH Buffer 7.0 7,0	I Buffer 4.0 4.0
Specific Conductance 1000 µMHOS/ cm	Well Depth(0.01ft):
Depth to Water Before Purging 39,32 Casing	Volume (V) 4" Well: 0 (.653h) 3" Well: 0 (.367h)
Weather Cond. Sunny	Ext'l Amb. Temp. °C (prior sampling event) 79°
Time 1314 Gal. Purged 0	Time Gal. Purged
Conductance 816 pH 6,70	Conductance pH
Temp. °C [14,93]	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU) Z.0	Turbidity (NTU)
Time Gal. Purged	Time Gal. Purged
Conductance pH	Conductance pH
Temp. °C	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)

Pumping Rate Calculation								
Flow Rate (Q), in gpm. $S/60 = \boxed{0}$]		Time to evac: T = 2V/Q = [ate two	casing	volumes (2V)		
Number of casing volume				0				
If well evacuated to dryne Name of Certified Analyti				AWA	L			
Type of Sample	Sampl	e Taken	Sample Vol (indicate if other than as	Filt	ered	Preservative Type	Preserva	tive Added
	Y	N	specified below)	Y	N		Y	N
OCs			3x40 ml			HCL		
utrients	也		100 ml			H2SO4	凹	
eavy Metals			250 ml			HNO3		
ll Other Non Radiologics			250 ml			No Preserv.		
ross Alpha			1,000 ml			HNO3		
ther (specify)	*		Sample volume		6			ď
Chloride						If preservative is used Type and Quantity of		ve:
inal Depth 39.80	<u></u>	Sample T	Time 1317			See	instruction	n
Arrived on site at 19 Samples bailed at Left site at 13	1317				collec	ct samples,		

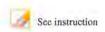
Piez-02 05-17-2016 Do not touch this cell (SheetName)



Description of Sampling Event: 2nd Quarter Nite	ate 2016
	Sampler Name
Location (well name): Piez-03A	and initials: Tanner Holliday MH
Field Sample ID Piez-03A_0517Z616	
Date and Time for Purging 5/17/2016 and	Sampling (if different)
Well Purging Equip Used: pump or bailer We	ell Pump (if other than Bennet)
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarterly Nitrate Prev. W	Vell Sampled in Sampling Event Piez-01
pH Buffer 7.0 7.0 pH	Buffer 4.0 4,0
Specific Conductance 1000 µMHOS/ cm	Well Depth(0,01ft):
Depth to Water Before Purging 49.74 Casing	Volume (V) 4" Well: 0 (.653h) 3" Well: 0 (.367h)
Weather Cond. Sunny	Ext'l Amb. Temp. °C (prior sampling event)
34119	
Time 1359 Gal. Purged 0	Time Gal. Purged
Conductance 1258 pH 7.10	Conductance pH
Temp. °C [16.25]	Temp. °C
Redox Potential Eh (mV) 363	Redox Potential Eh (mV)
Turbidity (NTU) 2	Turbidity (NTU)
Time Gal. Purged	Time Gal. Purged
Conductance pH	Conductance pH
Temp. °C	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)

Flow Rate (Q), in gpm. S/60 = D			Time to evac T = 2V/Q =		casing	volumes (2V)		
Number of casing volume	s evacuated	l (if other	than two)	0				
If well evacuated to dryne	ss, number	of gallon	s evacuated	D				
Name of Certified Analyti	cal Labora	tory if Ot	her Than Energy Labs	AWAL				
Type of Sample	1 100.00	e Taken	Sample Vol (indicate if other than as		ered	Preservative Type		tive Added
72.0	Y	N	specified below)	Y	N	1101	Y	N
VOCs	D		3x40 ml		图	HCL	也 70	
Nutrients	D Z		100 ml 250 ml			H2SO4 HNO3	1	
Heavy Metals All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	粒		Sample volume		K			M
Chloride						If preservative is use Type and Quantity of		ive:
Final Depth 50,15		Sample T	Time 1406			See See	instructio	n
Arrived on site at Samples bailed as Left site at 141	+ 1400		and Garrin pre Nater was murk					

Piez-03A 05-17-2016 Do not touch this cell (SheetName)



Description of Sampling Event: 2nd Quarter Nitra	te 2016
Location (well name): TWN-0	Sampler Name and initials: Tanner Holliday/17
	and initials: [100000774
Field Sample ID TWN-01_05172016	
Date and Time for Purging 5/17/2014 and	Sampling (if different)
Well Purging Equip Used: Dump or Dumbailer W	(ell Pump (if other than Bennet) Grandfos
Purging Method Used: 2 casings 3 casings	The state of the s
Sampling Event Quartery Nitrate Prev. V	Vell Sampled in Sampling Event
pH Buffer 7.0 7.0 pH	Buffer 4.0 4.0
Specific Conductance 1000 µMHOS/ cm	Well Depth(0.01ft): 112,50
Depth to Water Before Purging 62.50 Casing	Volume (V) 4" Well: 32,65 (.653h) (.367h)
Weather Cond. Sunny	Ext'l Amb. Temp. °C (prior sampling event) 110
Time 0908 Gal. Purged 50	Time 0909 Gal. Purged 60
Conductance 849 pH 6.70	Conductance 851 pH 6,82
Temp. °C 15.08	Temp. °C 15.08
Redox Potential Eh (mV) 423	Redox Potential Eh (mV) 427
Turbidity (NTU)	Turbidity (NTU)
Time O910 Gal. Purged 70	Time O911 Gal. Purged 80
Conductance 853 pH 6.8L	Conductance 854 pH 6.80
Temp. °C 15.08	Temp. °C 15,07
Redox Potential Eh (mV) 422	Redox Potential Eh (mV) 422
Turbidity (NTU) 3.0	Turbidity (NTU)

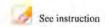
Volume of Water Purged Pumping Rate Calculation	80		gallon(s)					
Flow Rate (Q), in gpm. S/60 = 10.0			Time to evac $T = 2V/Q = $			volumes (2V)		
Number of casing volume	s evacuate	d (if other	than two)	0				
If well evacuated to dryne	ss, number	of gallor	is evacuated	0				
Name of Certified Analyti	cal Labora	tory if Ot	her Than Energy Labs	AWAL				
Type of Sample	Sampl	e Taken	Sample Vol (indicate if other than as	Filte	ered	Preservative Type	Preserva	tive Added
	Y	N	specified below)	Y	N		Y	N
OCs			3x40 ml			HCL		
utrients	E		100 ml		D	H2SO4	10	
leavy Metals			250 ml			HNO3		
Il Other Non Radiologics			250 ml			No Preserv.		
ross Alpha			1,000 ml			HNO3		
other (specify)	10		Sample volume		p			2
Chloride						If preservative is used Type and Quantity of		ive:
omment]	Sample T	Time 0911			See See	instructio	n
Arrived on site at 090	1, Tanne	er and	Garrin present fo	r purg	e and	sampling event.		
Purge began at 0903	Purge	ed wel	1 for a total of					
Samples collected at Left site at 0915		Wa	ter was clear					

TWN-01 05-17-2016 Do not touch this cell (SheetName)

Description of Sampling Event: 2nd Quarter Nitrat	e 2016
	Sampler Name
Location (well name): TWN- 02	and initials: Tanner Holliday JTH
Field Sample ID TWN-02_05/72016	
Date and Time for Purging 5/17/2016 and	Sampling (if different)
Well Purging Equip Used: Dpump or D bailer W	Tell Pump (if other than Bennet)
Purging Method Used: 2 casings 3 casings	Total Control of the
Sampling Event Quarter 14 witrate Prev. V	Vell Sampled in Sampling Event TWN-03
pH Buffer 7.0 7.0 pH	Buffer 4.0 4.0
Specific Conductance 1000 µMHOS/ cm	Well Depth(0.01ft): 96,00
Depth to Water Before Purging 31,48 Casing	Volume (V) 4" Well: 42.18 (.653h) 3" Well: 0 (.367h)
Weather Cond. Sunny	Ext'l Amb. Temp. °C (prior sampling event) 18°
Time 1309 Gal. Purged 0	Time Gal. Purged
Conductance 3096 pH 6.06	Conductance pH
Temp. °C	Temp. °C
Redox Potential Eh (mV) 466	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time Gal. Purged	Time Gal. Purged
Conductance pH	Conductance pH
Temp. °C	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)

Volume of Water Purged Pumping Rate Calculation	0		gallon(s)					
Flow Rate (Q), in gpm. $S/60 = 18.0$	1		Time to evac T = 2V/Q =			volumes (2V)		
Number of casing volumes	s evacuated	d (if other	than two)	0				
If well evacuated to dryne	ss, number	of gallon	s evacuated	0				
Name of Certified Analytic	cal Labora	tory if Ot	her Than Energy Labs	AWAL				
Type of Sample		e Taken	Sample Vol (indicate if other than as		ered	Preservative Type		tive Added
	Y	N	specified below)	Y	N		Y	N
OCs			3x40 ml			HCL		
utrients	Ā		100 ml		世	H2SO4	P)	
eavy Metals			250 ml			HNO3		
ll Other Non Radiologics			250 ml			No Preserv.		
ross Alpha			1,000 ml			HNO3		
ther (specify)	É		Sample volume		包			7
, Chloride						If preservative is used Type and Quantity of		ive:
inal Depth 53.95		Sample T	Time 1310]		See	instructio	n
Arrived on site at 1's samples collected as eff site at 13	+ 1310	Tanner W	and Garrin present ater was clear	+ to .	collect	Samples.		

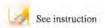
TWN-02 05-17-2016 Do not touch this cell (SheetName)



Description of Sampling Event: Znd Quarter A	CET FOR GROUNDWATER Vitrate 2016
	Sampler Name
Location (well name): TWN-03	and initials: Tanner Holliday/TH
Field Sample ID TWN-03_05182016	
Date and Time for Purging 5/17/2016	and Sampling (if different) 5/18/2014
Well Purging Equip Used: Dump or D bailer	Well Pump (if other than Bennet)
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarterly Nitrate Pr	rev. Well Sampled in Sampling Event ナルルー04
pH Buffer 7.0 7.0	pH Buffer 4.0
Specific Conductance 1000 µMHOS/ cm	Well Depth(0.01ft): 96.00
Depth to Water Before Purging 39.43	asing Volume (V) 4" Well: 36,94 (.653h) 3" Well: 0 (.367h)
Weather Cond. Sunny	Ext'l Amb. Temp. °C (prior sampling event) 5°
Time 103Z Gal. Purged 65	Time Gal. Purged
Conductance Z198 pH 6.62	Conductance pH
Temp. °C 14,80	Temp. °C
Redox Potential Eh (mV) 42Z	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time 0804 Gal. Purged 0	Time 0806 Gal. Purged 0
Conductance 2124 pH 7.07	Conductance 2134 pH 7.04
Тетр. °С 14,17	Temp. °C [14.21
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Before	After

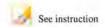
Pumping Rate Calculation								
Flow Rate (Q), in gpm.			Time to evac	uate two	casing	volumes (2V)		
S/60 = 10.0			T = 2V/Q = [7.38				
Number of casing volumes If well evacuated to dryne Name of Certified Analyti	ss, number	of gallor	ns evacuated [1.75 65 AWAL				
Type of Sample	Sampl	e Taken	Sample Vol (indicate if other than as	Filt	ered	Preservative Type	Preserva	tive Added
	Y	N	specified below)	Y	N		Y	N
VOCs			3x40 ml			HCL		
Nutrients	尥		100 ml		12	H2SO4	X	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	K		Sample volume		10			M
Chloride						If preservative is use Type and Quantity of		ive:
Final Depth 93.68 Comment		Sample 7	Time 0805			Sec	instructio	n
Arrived on site at 1 Purged Well for a to Water was mostly C	tal of lear. L	6 minu	and Garrin present ates 30 seconds. He at 1035 and Garrin present	Purge	d wel	1 dry! Purge e	nded a	+ 1032

TWN-03 05-17-2016 Do not touch this cell (SheetName)



Description of Sampling Event: 2nd Quarter Nitrate	zole
	Sampler Name
Location (well name): TWN-04	and initials: Tanner Holliday/TH
Field Sample ID TWN-04_05172016	
Date and Time for Purging 5/17/2016 and	Sampling (if different)
Well Purging Equip Used: □ pump or □ bailer W	ell Pump (if other than Bennet)
Purging Method Used: 2 casings 2 casings	
Sampling Event Quarterly Nitrate Prev. W	/ell Sampled in Sampling Event TWN-01
pH Buffer 7.0 7.0 pH	Buffer 4.0 4.0
Specific Conductance 1000 µMHOS/ cm	Well Depth(0.01ft): 125.70
Depth to Water Before Purging 55.38 Casing	Volume (V) 4" Well: 45.41 (.653h) 3" Well: 0 (.367h)
Weather Cond. Sunny	Ext'l Amb. Temp. °C (prior sampling event) 13°
Time 0943 Gal. Purged 80	Time 0944 Gal. Purged 90
Conductance 1059 pH 6,50	Conductance 1058 pH 6.57
Temp. °C 14, 13	Temp. °C 14.73
Redox Potential Eh (mV) 394	Redox Potential Eh (mV) 392
Turbidity (NTU)	Turbidity (NTU)
Time 0945 Gal. Purged 100	Time 0944 Gal. Purged 110
Conductance 1058 pH 6.61	Conductance 1057 pH 6.63
Temp. °C 14,73	Temp. °C 14,72
Redox Potential Eh (mV) 39	Redox Potential Eh (mV) 390
Turbidity (NTU)	Turbidity (NTU)

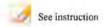
Pumping Rate Calculation Flow Rate (Q), in gpm.			Time to evac	uate two	casing	volumes (2V)		
S/60 = 10.0			T = 2V/Q = [9.18				
Number of casing volume	s evacuated	d (if other	than two)	0				
If well evacuated to dryne	ss, number	of gallor	ns evacuated	D				
Name of Certified Analyti	cal Labora	tory if Ot	her Than Energy Labs	AWAL				
Type of Sample	Sampl	mple Taken Sample Vol (indicate if other than as Filtered Preservative Type Preservative Added						
	Y	N	specified below)	Y	N		Y	N
VOCs			3x40 ml			HCL		
Nutrients	1		100 ml		乜	H2SO4	D	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	M		Sample volume		K			M
Chloride						If preservative is used Type and Quantity of		ive:
Final Depth 56,55		Sample 7	Time 0946			See :	instructio	n
	33 T.	200	Grain present I	C 511-	40 0	A Campling 0:	7	
Arrived on site at 09	35 Pura	ged w	vell for a total ater was clear,	of 11	ge an	nutes. Purge e	nt. ended a	nd



Description of Sampling Event: 2nd Quarter Nitrat	E 2016
	Sampler Name
Location (well name): TWN-07	and initials: Tanner Holliday ITH
Field Sample ID TWN-07_0518Z014	
Date and Time for Purging 5/17/2016 an	d Sampling (if different) 5/18/2016
Well Purging Equip Used: D pump or D bailer	Well Pump (if other than Bennet)
Purging Method Used: 2 casings 2 casings	
Sampling Event Quarterly Nitrate Prev.	Well Sampled in Sampling Event
pH Buffer 7.0 7.0	H Buffer 4.0 4.0
Specific Conductance 1000 µMHOS/ cm	Well Depth(0.01ft): 105.00
Depth to Water Before Purging 84.92 Casin	g Volume (V) 4" Well: 13.11 (.653h) 3" Well: 0 (.367h)
Weather Cond, Sunny	Ext'l Amb. Temp. °C (prior sampling event)
Time 0740 Gal. Purged 20	Time Gal. Purged
Conductance 1239 pH 7.22	Conductance pH
Temp. °C 14.78	Temp. °C
Redox Potential Eh (mV) 45Z	Redox Potential Eh (mV)
Turbidity (NTU) 3.2	Turbidity (NTU)
Time 0756 Gal. Purged 0	Time 0758 Gal. Purged 0
Conductance 1312 pH 7.38	Conductance 1306 pH 7.36
Temp. °C \\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	Temp. °C [15.1]
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Before	After

Volume of Water Purged	20		gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. $S/60 = \boxed{10.0}$	1		Time to evac $T = 2V/Q =$	2.62	casing	volumes (2V)		
Number of casing volumes If well evacuated to drynes	s, number	of gallon	s evacuated	20				
Name of Certified Analytic	al Labora	tory if Ot	her Than Energy Labs	AWAL				
Type of Sample	Sampl	e Taken	Sample Vol (indicate if other than as	Filte	ered	Preservative Type	Preserva	tive Added
the state of the s	Y	N	specified below)	Y	N		Y	N
VOCs			3x40 ml			HCL		
Nutrients	ď		100 ml		Č	H2SO4	ď	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	口		Sample volume		10			ď
Chloride						If preservative is used Type and Quantity of		ve:
Final Depth 103,03]	Sample T	ime 0757			See .	instruction	n
Arrived on site at tosy Purged well For a tota water was clear. Left Arrived on site at 075: Samples bailed at 0	l of z site at 3. Tanne	minutes 0742 r and G	s. Purged w well d	y! P	rge en	nded at 0740.		s 94,98

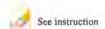
TWN-07 05-17-2016 Do not touch this cell (SheetName)



Description of Sampling Event: 2nd Quarter witro	
Location (well name): TWN-07R	Sampler Name and initials: Tanner Holliday/TH
Field Sample ID TWN-07R_05172016	
Date and Time for Purging 5/17/2016 and	Sampling (if different)
Well Purging Equip Used: Dump or Dumbailer	ell Pump (if other than Bennet) Grundfos
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarterly Nitrate Prev. W	Vell Sampled in Sampling Event
pH Buffer 7.0 7.0 pH	Buffer 4.0 4.0
Specific Conductance 1000 µMHOS/ cm	Well Depth(0.01ft):
Depth to Water Before Purging O Casing	Volume (V) 4" Well: (.653h) 3" Well: (.367h)
Weather Cond. Partly Cloudy	Ext'l Amb. Temp. °C (prior sampling event) 7°
Time 0722 Gal. Purged 120	Time Gal. Purged
Conductance 0,8 pH 8,00	Conductance pH
Temp. °C 15.70	Temp. °C
Redox Potential Eh (mV) 407	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time Gal. Purged	Time Gal. Purged
Conductance pH	Conductance pH
Temp. °C	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)

Flow Rate (Q), in gpm. S/60 = 10.0			Time to evac T = 2V/Q =		casing	volumes (2V)		
Number of casing volume	s evacuate	d (if other	than two)	0				
If well evacuated to dryne	ss, number	of gallon	s evacuated	0				
Name of Certified Analyti	cal Labora	tory if Ot	her Than Energy Labs	AWAL				
Type of Sample	Sampl	e Taken	Sample Vol (indicate if other than as	Filte	ered	Preservative Type	Preserva	tive Added
	Y	N	specified below)	Y	N		Y	N
OCs	P		3x40 ml			HCL		
utrients	也		100 ml		Ď	H2SO4	M	
eavy Metals			250 ml			HNO3		
II Other Non Radiologics			250 ml			No Preserv.		
ross Alpha			1,000 ml			HNO3		
ther (specify)	内		Sample volume		ď		ď	
Chloride						If preservative is used Type and Quantity of		ve:
10 11 0		Sample T	ime 0723			See	instruction	
omment Arrived on site at Purged 50 Gallons at 0723. Left site								

TWN-07R 05-17-2016 Do not touch this cell (SheetName)



Description of Sampling Event: Znd Quarter Witrate	
Location (well name): TWN-18	Sampler Name and initials: Tanner Holliday/TH
Field Sample ID TWN-18_05172016	
Date and Time for Purging 5/17/2.016 and	Sampling (if different)
Well Purging Equip Used: Dpump or Dbailer W	(ell Pump (if other than Bennet)
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarterly Nitrate Prev. V	Vell Sampled in Sampling Event TWN-07
pH Buffer 7.0 7.0 pH	Buffer 4.0 4.0
Specific Conductance 1000 µMHOS/ cm	Well Depth(0.01ft): 145,00
Depth to Water Before Purging 60.34 Casing	Volume (V) 4" Well: 55.28 (.653h) 3" Well: 0 (.367h)
Weather Cond. Sunny	Ext'l Amb. Temp. °C (prior sampling event)
Time 0832 Gal. Purged 100	Time 0833 Gal. Purged 110
Conductance 2779 pH 6.45	Conductance ZZ80 pH 4.54
Temp. °C	Тетр. °С
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time 0834 Gal. Purged 120	Time 0835 Gal. Purged 130
Conductance 2278 pH 6.54	Conductance 2276 pH 6.58
Temp. °C 14.37	Temp. °C 19.34
Redox Potential Eh (mV) 445	Redox Potential Eh (mV) 445
Turbidity (NTU)	Turbidity (NTU)

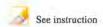
Pumping Rate Calculation Flow Rate (Q), in gpm. S/60 = 10.0			Time to evac T = 2V/Q =			volumes (2V)		
Number of casing volume If well evacuated to dryne				ō D				
Name of Certified Analyti	cal Labora	tory if Ot	her Than Energy Labs	AWAL				
Type of Sample	Sampl	e Taken	Sample Vol (indicate if other than as	Filt	ered	Preservative Type	Preserva	tive Added
	Y	N	specified below)	Y	N		Y	N
OCs			3x40 ml			HCL		
utrients	D		100 ml		K	H2SO4	M	
leavy Metals			250 ml			HNO3		
Il Other Non Radiologics			250 ml			No Preserv.		
ross Alpha			1,000 ml			HNO3		
Other (specify)	K		Sample volume		Ø			ď
Shloride						If preservative is used Type and Quantity of		ive:
inal Depth 61,55]	Sample 7]		2	instructio	n
omment				0		and sampling eve		

TWN-18 05-17-2016 Do not touch this cell (SheetName)

Description of Sampling Event: 2nd Quarter Chlo	rotorm Z016
	Sampler Name
Location (well name): TWY-ZZ	and initials: Tanner Holliday 17#
Field Sample ID TW4-ZZ_0523Z016	
Date and Time for Purging 5/23/2016 and	Sampling (if different)
Well Purging Equip Used: Dpump or D bailer W	Tell Pump (if other than Bennet)
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarterly Chloroform Prev. V	Vell Sampled in Sampling Event TW4-24
pH Buffer 7.0 7.0 pH	Buffer 4.0 4.0
Specific Conductance 1000 µMHOS/ cm	Well Depth(0.01ft): 113,50
Depth to Water Before Purging 96.00 Casing	Volume (V) 4" Well: 11,47 (.653h) 3" Well: 0 (.367h)
Weather Cond. Sunny	Ext'l Amb. Temp. °C (prior sampling event) 20°
Time 1359 Gal. Purged 6	Time Gal. Purged
Conductance 5384 pH 6.29	Conductance pH
Temp. °C (L,2)	Temp. °C
Redox Potential Eh (mV) 341	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time Gal. Purged	Time Gal. Purged
Conductance pH	Conductance pH
Temp. °C	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)

Comment Arrived on site at Samples collected Left Site at 14	at 140		ver and Garrin p water was c		t to	-		
inal Depth 111.6Z		Sample T	ime 1400	C		See	instruction	n
Chloride						If preservative is used Type and Quantity of		ve:
Other (specify)	的		Sample volume		6			曲
Gross Alpha			1,000 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.	-	
Nutrients Ieavy Metals			100 ml 250 ml			H2SO4 HNO3		
/OCs	曲曲		3x40 ml		Z)	HCL	Ö	
	Y	N	specified below)	Y	N		Y	N
Type of Sample	Sampl	e Taken	Sample Vol (indicate if other than as	Filte	ered	Preservative Type	Preserva	tive Added
Name of Certified Analyti	cal Labora	tory if Ot	her Than Energy Labs	AWAL				
If well evacuated to dryne	ss, number	of gallon	as evacuated	0				
Number of casing volume	s evacuate	d (if other	than two)	٥				
Flow Rate (Q), in gpm. $S/60 = 16.0$			Time to evac $T = 2V/Q =$		casing	volumes (2V)		
Pumping Rate Calculation								
Volume of Water Purged	0		gallon(s)					

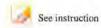
TW4-22 05-23-2016 Do not touch this cell (SheetName)



Description of Sampling Event: 2nd Quarter Chlor	
Location (well name): TW4-24	Sampler Name and initials: Tanner Holliday /TH
Field Sample ID TW4-29_05232016	
Date and Time for Purging 5/23/2016 and	Sampling (if different)
Well Purging Equip Used: pump or bailer W	Yell Pump (if other than Bennet)
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarter & Chloroform Prev. V	Vell Sampled in Sampling Event TW4-25
pH Buffer 7.0 7.0 pH	Buffer 4.0 4.0
Specific Conductance 1000 µMHOS/ cm	Well Depth(0.01ft): 112,50
Depth to Water Before Purging 82.40 Casing	Volume (V) 4" Well: 19.65 (.653h) 3" Well: 0 (.367h)
Weather Cond. Sunny	Ext'l Amb. Temp. °C (prior sampling event) 20
Time 1350 Gal. Purged 0	Time Gal. Purged
Conductance 7130 pH 6.13	Conductance pH
Temp. °C	Temp. °C
Redox Potential Eh (mV) 383	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time Gal. Purged	Time Gal. Purged
Conductance pH	Conductance pH
Temp. °C	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)

		A	7					
Volume of Water Purged		0	gallon(s)					
Pumping Rate Calculation								
Flow Rate (Q), in gpm. S/60 = 16,0			Time to evac $T = 2V/Q =$			volumes (2V)		
Number of casing volume	s evacuate	d (if other	than two)	0				
If well evacuated to dryne	ss, number	r of gallor	as evacuated	D				
Name of Certified Analyti	cal Labora	atory if Ot	her Than Energy Labs	AWAL				
Type of Sample	Samp	le Taken	Sample Vol (indicate if other than as	Filt	ered	Preservative Type	Preserva	tive Added
	Y	N	specified below)	Y	N		Y	N
OCs .	卢		3x40 ml		4	HCL	Ä	
lutrients	b		100 ml		Ď	H2SO4	Ö	
leavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	Ď		Sample volume		西			险
Chloride						If preservative is use	d, specify	
	1					Type and Quantity of		ive:
0.77	_							
inal Depth 91,66		Sample 7	Time [135]					
Comment				L I		100	instruction	n
Arrived on site at	1347	Tanner	and Garrin preser	17 to	collec	t samples		
samples collected o	1 1051	1.70	ter was clear					
Leff site at 135		10-	(10 10 J					
Lett Site at 133	1							
-	1.	-						
/ 20	ntinual	IS P	imping well					

TW4-24 05-23-2016 Do not touch this cell (SheetName)


Description of Sampling Event: Znd Quarter Chlorof	
Location (well name): TW4-25	Sampler Name and initials: Tanner Holliday/TH
Field Sample ID TW4-25_05232016	
Date and Time for Purging 5/23/2016 and	Sampling (if different)
Well Purging Equip Used: Dpump or D bailer W	ell Pump (if other than Bennet)
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarterly Chloroform Prev. W	Vell Sampled in Sampling Event TW4-21
pH Buffer 7.0 7.0 pH	Buffer 4.0 4.0
Specific Conductance 1000 µMHOS/ cm	Well Depth(0.01ft): 134.80
Depth to Water Before Purging 64,15 Casing	Volume (V) 4" Well: 46.13 (.653h) 3" Well: 0 (.367h)
Weather Cond. Sunny	Ext'l Amb. Temp. °C (prior sampling event) 20°
Time 1334 Gal. Purged 0	Time Gal. Purged
Conductance Z674 pH 6.53	Conductance pH
Temp. °C 15.95	Temp. °C
Redox Potential Eh (mV) 403	Redox Potential Eh (mV)
Turbidity (NTU) 6.7	Turbidity (NTU)
Time Gal. Purged	Time Gal. Purged
Conductance pH	Conductance pH
Temp. °C	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)

of gallon	T = 2V/Q = than two) as evacuated ther Than Energy Labs Sample Vol (indicate if other than as specified below) 3x40 ml	G.IS O AWAL Filte	ered	Preservative Type	Preserva	tive Added
of gallon cory if Ot Taken	her Than Energy Labs Sample Vol (indicate if other than as specified below) 3x40 ml	AWAL Filte	ered	Preservative Type	Preserva	tive Added
e Taken	Sample Vol (indicate if other than as specified below) 3x40 ml	AWAL Filte	ered	Preservative Type	Preserva	tive Added
Taken	Sample Vol (indicate if other than as specified below) 3x40 ml	Filte	ered	Preservative Type	Preserva	tive Added
N	if other than as specified below) 3x40 ml	Y		Preservative Type	Preserva	tive Added
	3x40 ml		N.T			
			N		Y	N
	1100		卢	HCL	户	
	100 ml		É	H2SO4	图	
	250 ml			HNO3		
	250 ml			No Preserv.		
	1,000 ml			HNO3		
	Sample volume		恼			构
						ive:
Sample T	Time 1335			See	instructio	n
				1		
Tanner	and Garrin prese	nt to	collec	et samples.		
	Sample Tanner	Sample Time 1335 Tanner and Garrin prese S water was clear	Sample Time 1335 Tanner and Garrin present to	Sample Time 1335 Tanner and Garrin present to collect S water was clear	Sample Time 1335 See Tanner and Garrin present to collect samples. S water was clear	If preservative is used, specify Type and Quantity of Preservation Sample Time 1335 See instruction Tanner and Garrin present to collect samples. S water was clear

TW4-25 05-23-2016

Do not touch this cell (SheetName)

Description of Sampling Event: Zna Quarter Nitra	
Location (well name): TWN-60	Sampler Name and initials: Tanner Holliday/TH
Field Sample ID TWN-60_0518Z016	
Date and Time for Purging 5/18/2016 and	Sampling (if different)
Well Purging Equip Used: pump or bailer W	ell Pump (if other than Bennet)
Purging Method Used: 2 casings 3 casings	
Sampling Event Quartery Nitrate Prev. W	Vell Sampled in Sampling Event Piez- 03A
pH Buffer 7.0 7.0 pH	Buffer 4.0 4.0
Specific Conductance 1000 µMHOS/ cm	Well Depth(0.01ft): 6
Depth to Water Before Purging Casing	Volume (V) 4" Well: 0 (.653h) 3" Well: 0 (.367h)
Weather Cond. Partly Cloudy	Ext'l Amb. Temp. °C (prior sampling event) 21°
Time 344 Gal. Purged O	Time Gal. Purged
Conductance 0.8 pH 8.50	Conductance pH
Temp. °C	Temp. °C
Redox Potential Eh (mV) 311	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time Gal. Purged	Time Gal. Purged
Conductance pH	Conductance pH
Temp. °C	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)

Pumping Rate Calculation								
Flow Rate (Q), in gpm. S/60 = 0]		Time to evac $T = 2V/Q =$		casing	volumes (2V)		
Number of casing volumes	evacuate	d (if other	than two)	0				
If well evacuated to drynes	ss, number	of gallor	as evacuated	0				
Name of Certified Analytic	cal Labora	tory if Ot	her Than Energy Labs	AWAL				
Type of Sample	Sampl	e Taken	Sample Vol (indicate if other than as	Filt	ered	Preservative Type	Preserva	tive Added
	Y	N	specified below)	Y	N		Y	N
VOCs			3x40 ml		ď	HCL		
Nutrients	10		100 ml			H2SO4	刺	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml			No Preserv.		
Gross Alpha			1,000 ml			HNO3		
Other (specify)	N		Sample volume		Ø			121
(11.1	1					16		
		Sample 1	Time 1345			If preservative is used Type and Quantity of See		
		Sample 1	Time 1345			Type and Quantity of	Preservati	

10	See	instruction

Description of Sampling Event: Znd Quarter Chloro	form 2016
Location (well name): TW4-60	Sampler Name and initials: Tanner Holliday 177
Field Sample ID TW4-60_0608Z016	
Date and Time for Purging 6/8/2014 and	Sampling (if different)
Well Purging Equip Used: Dump or D bailer We	ell Pump (if other than Bennet)
Purging Method Used: 2 casings 2 casings	
Sampling Event Quarterly Chloroform Prev. W	Yell Sampled in Sampling Event MW-37
pH Buffer 7.0 7.0 pH	Buffer 4.0 4.0
Specific Conductance \\ \text{1000} \muMHOS/ cm	Well Depth(0.01ft):
Depth to Water Before Purging O Casing	Volume (V) 4" Well: 0 (.653h) 3" Well: 0 (.367h)
Weather Cond. Partly Cloudy	Ext'l Amb. Temp. °C (prior sampling event) Z2°
Time 1359 Gal. Purged 0	Time Gal. Purged
Conductance 1,0 pH 7.90	Conductance pH
Temp. °C 24.37	Temp. °C
Redox Potential Eh (mV) 358	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time Gal. Purged	Time Gal. Purged
Conductance pH	Conductance pH
Temp. °C	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)

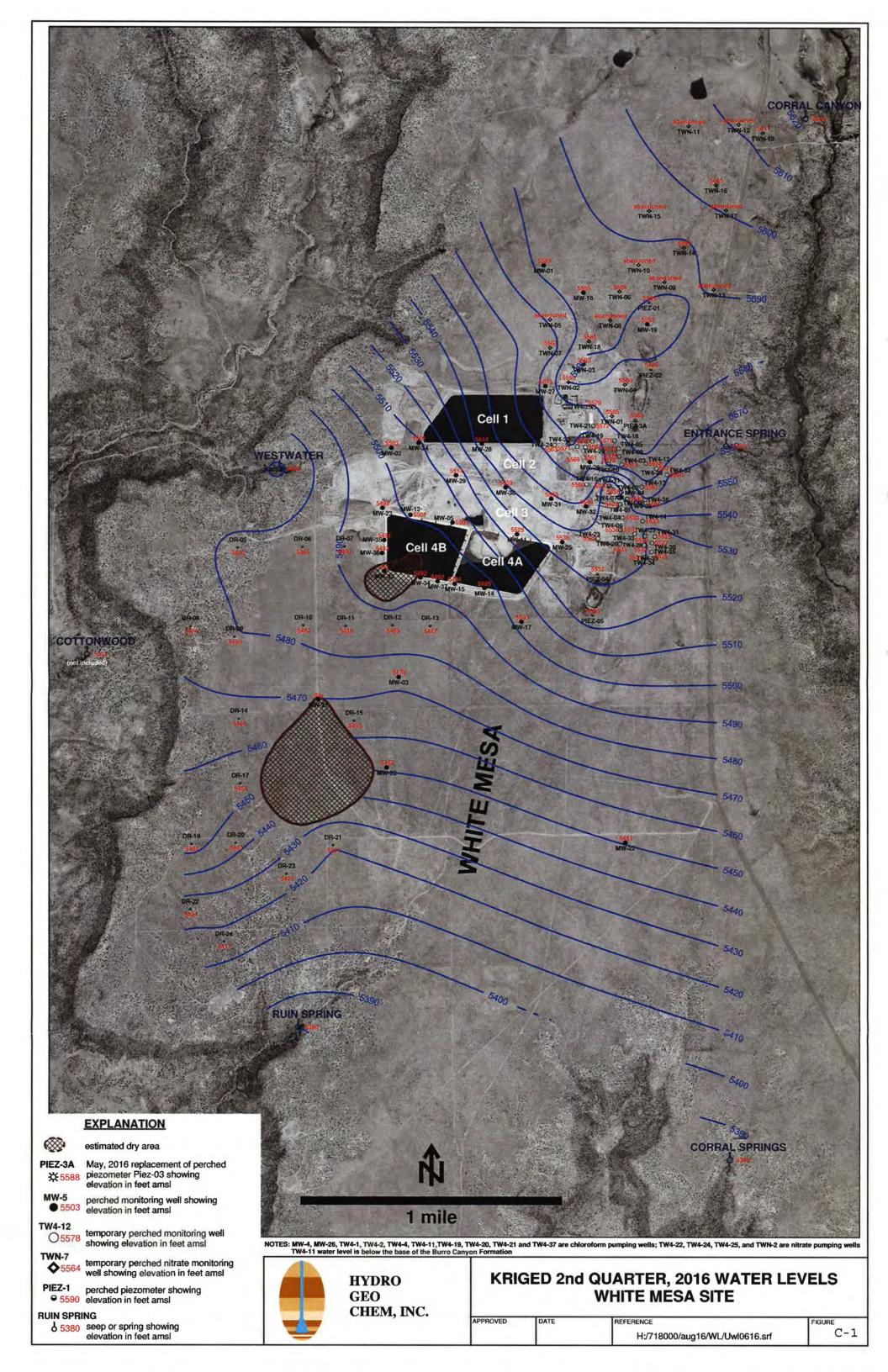
Pumping Rate Calculation Flow Rate (Q), in gpm.			Time to evac	nate two	casino	volumes (2V)		
S/60 = 0	7		$T = 2V/Q = \int$	D	cusing			
Number of casing volumes				6				
Name of Certified Analyti	cal Labora	tory if Ot	her Than Energy Labs	AWAL	•	4		
Type of Sample	Sampl	e Taken	Sample Vol (indicate if other than as	Filte	ered	Preservative Type	Preserva	tive Added
	Y	N	specified below)	Y	N		Y	N
OCs	Ď		3x40 ml		Þ	HCL	Ø	
utrients	Ď		100 ml		Ď	H2SO4	世	
eavy Metals			250 ml			HNO3		
ll Other Non Radiologics			250 ml			No Preserv.		
ross Alpha			1,000 ml			HNO3		
ther (specify)	10		Sample volume		色			户
Chloride						If preservative is used Type and Quantity of		ve:
inal Depth 0]	Sample T	Time 1400					
inal Depth 0		Sample T	ime 1700			See	instructio	i i

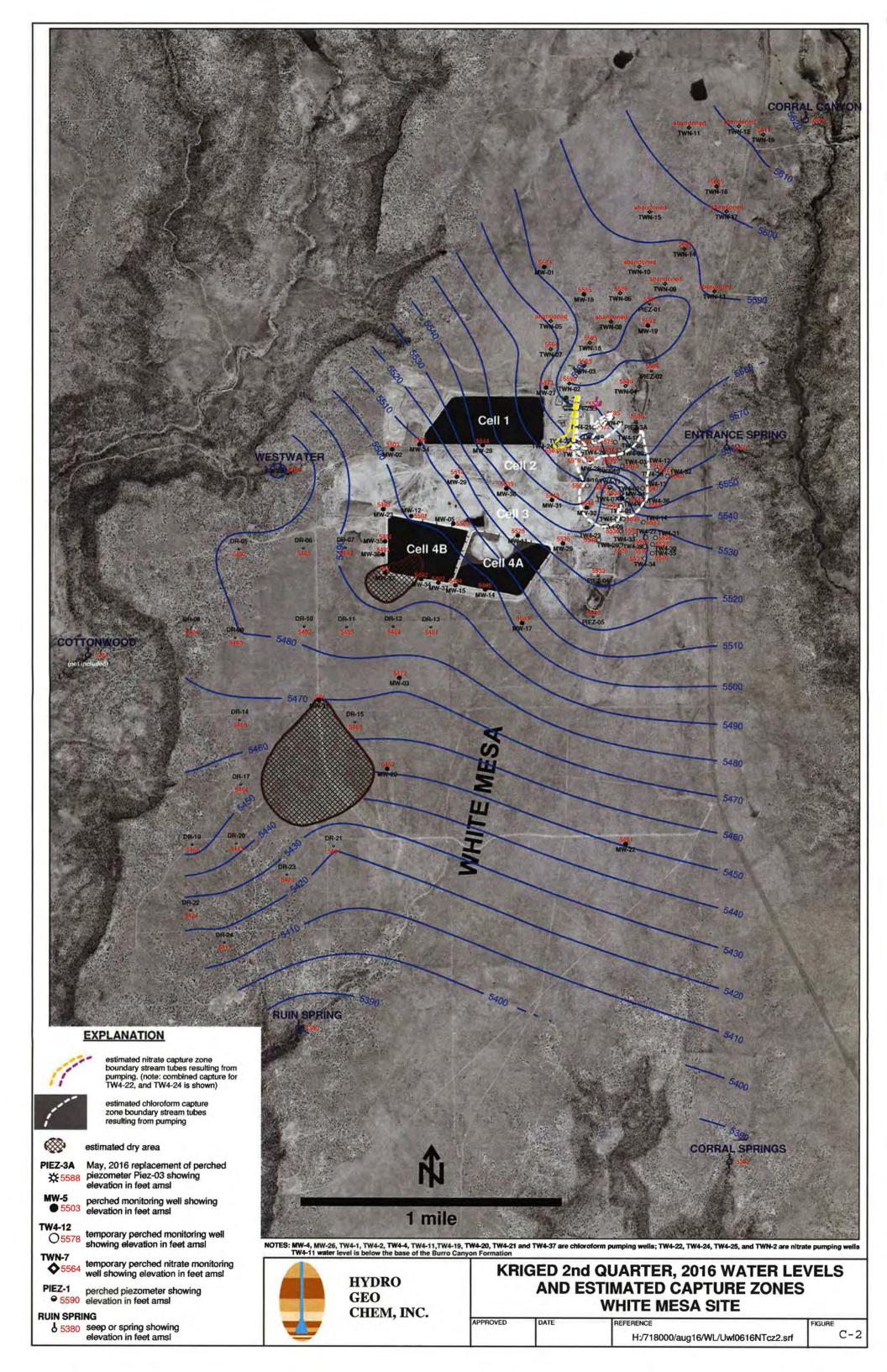
Description of Sampling Event: 2nd Quarter Witr	ate 2016
Location (well name): TWN-65	Sampler Name and initials: Tanner Holliday ATH
Field Sample ID TWN-65_05 172016	
Date and Time for Purging 5/17/2016 an	d Sampling (if different)
Well Purging Equip Used: Dump or Dumbailer	Well Pump (if other than Bennet) Grundfos
Purging Method Used: 2 casings 3 casings	
Sampling Event Quarterly Nitrate Prev.	Well Sampled in Sampling Event TWN-07
pH Buffer 7.0 7.0	H Buffer 4.0 4.0
Specific Conductance 1060 µMHOS/ cm	Well Depth(0.01ft): 145,00
Depth to Water Before Purging 60,34 Casin	g Volume (V) 4" Well: 55,28 (.653h) 3" Well: 0 (.367h)
Weather Cond. Sunny	Ext'l Amb. Temp. °C (prior sampling event) 9°
Time Gal. Purged	Time Gal. Purged
Conductance pH	Conductance pH
Temp. °C	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)
Time Gal. Purged	Time Gal. Purged
Conductance pH	Conductance pH
Temp. °C	Temp. °C
Redox Potential Eh (mV)	Redox Potential Eh (mV)
Turbidity (NTU)	Turbidity (NTU)

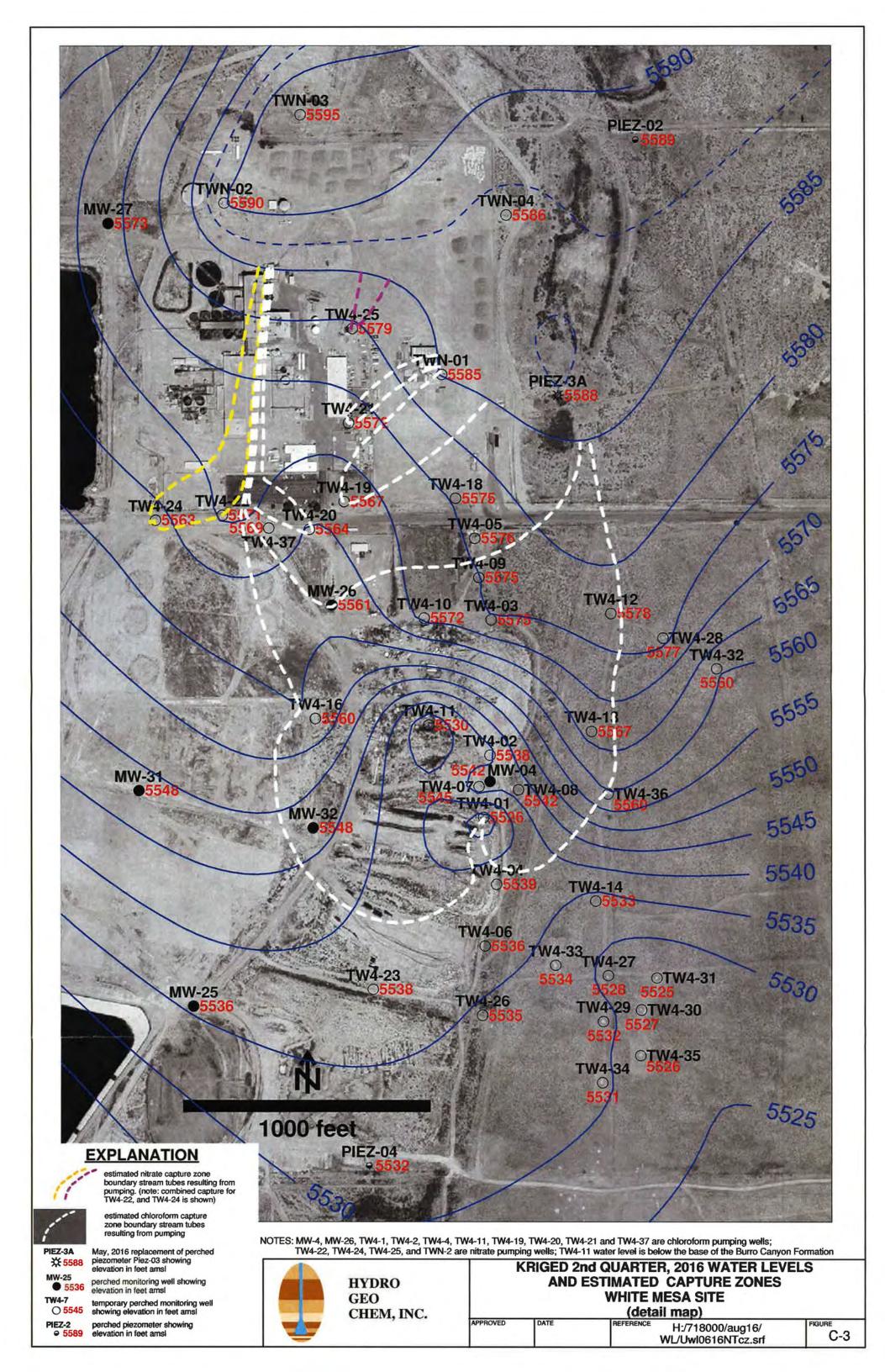
Pumping Rate Calculation Flow Rate (Q), in gpm.			Time to evac	uate two	casing	volumes (2V)		
S/60 = 10.0			T = 2V/Q =					
Number of casing volume				0 D				
Name of Certified Analyti	cal Labora	tory if Ot	her Than Energy Labs	AWAL				
Type of Sample	Sampl	e Taken	Sample Vol (indicate if other than as	Filt	ered	Preservative Type	Preserva	tive Added
	Y	N	specified below)	Y	N		Y	N
/OCs			3x40 ml			HCL		
Vutrients	E		100 ml		N	H2SO4	0	
Heavy Metals			250 ml			HNO3		
All Other Non Radiologics			250 ml 1,000 ml			No Preserv. HNO3		
Gross Alpha Other (specify)		ш	Sample volume	- 0		HINOS		Ц
other (specify)	NI NI		Sample volume		P.			E
Chloride						If preservative is used Type and Quantity of		ve:
Final Depth 61.55		Sample 7	Time 0835			See	instructio	n
	1	0 -	F 10 10					
	cate	ot.	TWN - 18					

Tab C

Kriged Current Quarter Groundwater Contour Map, Capture Zone Map, Capture Zone Details Map, and Weekly, Monthly and Quarterly Depth to Water Data


NAME: Garrin Palmer, Tanner Holliday 6/30/2016


706


TW4-37

62.78

Time	Well	Depth to Water (ft.)	Time	Well	Depth to Water (ft.)	Time	Well	Depth to Water (ft.)	Time	Well	Depth to Water (ft.)
704	MW-1	64.32	735	MW-4	80.02	654	PIEZ-1	65.21	NA	DR-1	Abandoned
748	MW-2	109.82	734	TW4-1	92.66	648	PIEZ-2	39.65	NA	DR-2	Abandoned
830	MW-3	82.50	737	TW4-2	86.41	722	PIEZ-3A	50.15	1307	DR-5	83.12
8028	MW-3A	84.47	731	TW4-3	57.34	840	PIEZ-4	59.33	1303	DR-6	94.30
800	MW-5	106.25	738	TW4-4	74.03	837	PIEZ-5	58.94	817	DR-7	92.10
838	MW-11	86.04	728	TW4-5	64.98	731	TWN-1	62.79	1258	DR-8	51.40
803	MW-12	108.25	739	TW4-6	72.70	727	TWN-2	36.43	1255	DR-9	86.57
830	MW-14	103.11	736	TW4-7	76.45	724	TWN-3	39.89	1252	DR-10	78.40
827	MW-15	106.12	733	TW4-8	79.30	719	TWN-4	55.69	824	DR-11	98.11
814	MW-17	71.88	729	TW4-9	62.85	NA	TWN-5	Abandoned	821	DR-12	91.00
700	MW-18	72.25	726	TW4-10	62.45	657	TWN-6	78.62	817	DR-13	69.90
651	MW-19	62.18	701	TW4-11	93.77	707	TWN-7	85.29	1245	DR-14	76.34
1312	MW-20	88.90	806	TW4-12	46.20	NA	TWN-8	Abandoned	1249	DR-15	92.96
1211	MW-22	66.75	804	TW4-13	52.45	NA	TWN-9	Abandoned	NA	DR-16	Abandoned
806	MW-23	114.22	800	TW4-14	79.64	NA	TWN-10	Abandoned	1241	DR-17	64.92
744	MW-24	112.96	703	TW4-15	64.94	NA	TWN-11	Abandoned	NA	DR-18	Abandoned
842	MW-25	77.21	850	TW4-16	64.07	NA	TWN-12	Abandoned	1227	DR-19	63.05
703	MW-26	64.94	847	TW4-17	77.56	NA	TWN-13	Abandoned	1224	DR-20	55.55
713	MW-27	54.51	732	TW4-18	65.93	643	TWN-14	61.22	1215	DR-21	101.12
740	MW-28	75.30	1000	TW4-19	64.48	NA	TWN-15	Abandoned	1232	DR-22	60.66
752	MW-29	100.72	705	TW4-20	65.11	640	TWN-16	47.70	1219	DR-23	70.53
755	MW-30	75.39	734	TW4-21	67.49	NA	TWN-17	Abandoned	1235	DR-24	44.35
845	MW-31	68.40	707	TW4-22	58.25	716	TWN-18	60.60	NA	DR-25	Abandoned
847	MW-32	77.56	740	TW4-23	69.77	634	TWN-19	49.97			
813	MW-33	DRY	709	TW4-24	62.19						
822	MW-34	107.79	728	TW4-25	65.66	1					
809	MW-35	112.38	741	TW4-26	67.07	1					
812	MW-36	110.50	748	TW4-27	79.60	1					
824	MW-37	107.08	807	TW4-28	40.25	1					
			758	TW4-29	74.03	1					
			752	TW4-30	75.77	1					
			750	TW4-31	79.25						
			809	TW4-32	51.59						
			746	TW4-33	72.83]					
			756	TW4-34	72.06						
			754	TW4-35	74.12						
			802	TW4-36	56.39						
				The second second		1					

Date 4/4/16

Name Garrin Palmer, Tamer Holliday

Time	Well	Depth*	Comments	System Operational (If no note any problems/corrective actions)
1511	MW-4	82.41	Flow 4.5	Yes No
1511	10100-4	82.91	Meter 976684.67	Yes No
			1000 7708 8 4.87	(Tes) No
1502	MW-26	64.04	Flow 9.0	(Yes) No
			Meter 75898.80	Yes No
1430	TW4-19	64.02	Flow 18.2	Yes No
7	7		Meter 389/28-20	(Yes) No
1500	TW4-20	64.95	Flow 7.0	Yes No
1500	111112	0 1.70	Meter 12858872	Yes) No
1517	TW4-4	72.01	Flow 11-0	(Yes) No
1017	1007-7	10.01	Meter 314869.00	(Yes) No
1445	TWN-2	31.80	Flow 18.8	Yes No
			Meter 612802.20	(Yes) No
1-145	TW4-22	31.80 59.11	Flow 17.4	(Yes) No
		59.11	Meter 309050.40	Yes No
1449	TW4-24	62.50	Flow 14.2	(Yes No
			Meter 95189.11	(Yes) No
1439	TW4-25	63.43	Flow 14.8	(Yes) No
			Meter 1529203.70	(Yes) No
1514	TW4-1	86.10	Flow 16.0	Yes No
			Meter 113757-60	(Yes) No
1508	TW4-2	78.90	Flow 17.0	Mes No
			Meter 111828.10	Yes>No
1505	TW4-11	91.18	Flow 17.0	(Yes) No
	7 1		Meter 26787.40	Yes No
1443	TW4-21	68.30	Flow 16.1	(Yes)No
		1 1 1	Meter 425800.72	(Yes)No
1456	TW4-37	63.18	Flow 17.4	Yes No
		Usering	Meter 379106-20	Yes No

Operational Problems (Please list well number):	
Corrective Action(s) Taken (Please list well number):	

1453

^{*} Depth is measured to the nearest 0.01 feet.

Date 4/11/16

Name Garrin Palmer, Tenner Holliday

				System Operational (If no note
Time	Well	Depth*	Comments	any problems/corrective actions)
1258	MW-4	79.80	Flow 4.4	(Yes) No
			Meter 983304.71	(Yes) No
1248	MW-26	86.43	Flow 8.0	(Yes) No
			Meter 77408.70	(Yes) No
1208	TW4-19	64.15	Flow 18.0	(Yes) No
1			Meter 397703.40	Yes No
1245	TW4-20	63.98	Flow 7.2	(Yes) No
2/2			Meter 129686,93	Yes No
1304	TW4-4	98.79	Flow 10.0	Yes No
411			Meter 319185.40	Yes No
1224	TWN-2	33.10	Flow 18.3	Yes No
			Meter 616433.40	Tes No
1239	TW4-22	58.57	Flow 17.0	(Yes) No
			Meter 311780.30	(Yes) No
1234	TW4-24	62.20	Flow 16.0	Yes No
		1-7-50	Meter 99794.89	Yes No
1220	TW4-25	85.33	Flow 15.0	(Yes) No
			Meter 1538148.40	(Yes) No
1301	TW4-1	104.15	Flow 16.0	Yes No
_			Meter 115151. 76	Ves No
1256	TW4-2	97.30	Flow 16.0	(Yes) No
			Meter 113372,30	(Yes) No
1250	TW4-11	92.34	Flow	(Yes) No
			Meter 27067.70	Yes) No
1217	TW4-21	67.74	Flow 16.0	(Yes) No
			Meter 435064.93	(Yes) No
1241	TW4-37	62.58	Flow 16.8	Yes No
			Meter 387479.40	Yes No

^{*} Depth is measured to the nearest 0.01 feet.

Date 4-18-16

Name Garrin Palmer, Tancer Holliday

Time	Well	Depth*	Comments	System Operational (If no note any problems/corrective actions)
1432	MW-4	81.56	Flow 4.5	(Yes) No
			Meter 990376.21	Yes No
1433	MW-26	64.46	Flow 8.8	Yes) No
			Meter 79146,80	Yes) No
1458	TW4-19	63.92	Flow 18.0	(Yes) No
			Meter 406672.70	Yes No
1430	TW4-20	64.80	Flow 8.0	(Yes) No
			Meter 1307289.80	(Yes) No
1438	TW4-4	71.89	Flow 11.0	(Yes) No
			Meter 323569.70	Yes No
1419	TWN-2	30.23	Flow 8. %	Yes No
			Meter 620175.40	Tes No
1426	TW4-22	61.00	Flow 17.0	(Yes) No
			Meter 3(3688,40	Yes No
1423	TW4-24	62.45	Flow 16.2	Yes No
			Meter 104486.56	Mes No
1415	TW4-25	63.62	Flow 15.0	(Yes) No
			Meter 1546989.40	Yes) No
1435	TW4-1	89.75	Flow 15.7	Yes No
			Meter 116455.20	Tes No
1439	TW4-2	79.22		Yes No
			Meter 114729.00	Yes No
1436	TW4-11	91,45	Flow 16.4	Yes No
			Meter 27332.70	Yes No
1407	TW4-21	67.33		Yes No
			Meter 444351.15	(Yes) No
1429	TW4-37	64.23	Flow 17.6	Yes No
			Meter 396066.90	Yes No

Operational Problems (Please list well number):	
Corrective Action(s) Taken (Please list well number):	

^{*} Depth is measured to the nearest 0.01 feet.

Date 4-25-16

Name Garrin Palmer

Time	Well	Donth*	Comments	System Operational (If no note any problems/corrective actions)
Time	MW-4	Depth*	Flow 4.5	Yes No
1930	10100-4	82.11		Yes No
			Meter 997134,33	Tes No
1422	MW-26	64.26	Flow 8.8	Yes No
			Meter 90751,30	(Yes) No
1459	TW4-19	63.78	Flow 18.0	(Yes')No
			Meter 415244.80	(es) No
144 9	TW4-20	76.33	Flow 8.0	(Yes) No
			Meter 131851,44	Yes No
1420	TW4-4	73.44	Flow II.O	Xes\ No
11.0			Meter 327817.90	(Yes) No
1409	TWN-2	29.70	Flow 18.6	(Yes) No
1 32		1.70	Meter 623798.70	(Yes) No
1414	TW4-22	65.74	Flow 17.0	(Yes) No
			Meter 315537.60	Yes No
1412	TW4-24	61.94	Flow 16.2	Yes No
			Meter 108931.96	Yes No
407	TW4-25	63.15	Flow 15.0	(Yes) No
			Meter 1555.741.60	Yes No
1433	TW4-1	90.75	Flow 15.7	(Yes No
			Meter 117847.50	Yes No
1428	TW4-2	78.92	Flow 17.0	Xes No
	Y-22		Meter 116283, 20	Yes No
1425	TW4-11	90.47	Flow 16.0	YES No
			Meter 27606.76	Yes No
1404	TW4-21	66.66	Flow 16.4	(Yes)No
			Meter 453650-74	(Yes) No
1417	TW4-37	68.19	Flow 17.0	Yes No
			Meter 404497.40	(Yes) No

Operational Problems (Please list well number):						
Corrective Action(s) Taken (Please list well number):						

^{*} Depth is measured to the nearest 0.01 feet.

Monthly Depth Check Form

Date 4-28-16		_	Name	Garria Pala	ner, Tame
Time	Well	Depth*	Time	Well	Depth*
1235	MW-4	80.02	1253	TWN-1	62.22
1236	TW4-1	88.60	1301	TWN-2	29.54
1234	TW4-2	79.46	1303	TWN-3	39.13
1247	TW4-3	56.56	1305	TWN-4	54,98
1238	TW4-4	73.50	1311	TWN-7	85.00
1249	TW4-5	64.32	1307	TWN-18	60.04
1244	TW4-6	72.00	_1309	MW-27	53.77
1740	TW4-7	76.00	1315	MW-30	74,92
1241	TW4-8	78.90	1317	MW-31	68.04
1250	TW4-9	62.16			
1252	TW4-10	61.80			_
1232	TW4-11	91.00			
1323	TW4-12	45.74			
1321	TW4-13	51.54	1325	TW4-28	39.77
1318	TW4-14	79.56	1316	TW4-29	73.46
1230	TW4-15	66.88	1310	TW4-30	75.40
1254	TW4-16	63.55	1309	TW4-31	79.06
1259	TW4-17	76.94	1326	TW4-32	50.95
1256	TW4-18	65.27	1305	TW4-33	72.33
1220	TW4-19	63.46	1314	TW4-34	71.54
1228	TW4-20	76.35	1312	TW4-35	73.34
1257	TW4-21	67.22	1320	TW4-36	_55.97
1224	TW4-22	65.70	1222	TW4-37	68.00
1300	TW4-23	69.05			
1225	TW4-24	63.84			
1259	TW4-25	63.16			
1302	TW4-26	66.54			
1307	TW4-27	79.26			

^{*} Depth is measured to the nearest 0.01 feet

Date 5/3/16

Name Garrin Palmer, Tonner Holliday

				System Operational (If no note
Time	Well	Depth*		any problems/corrective actions)
1317	MW-4	79.69		Yes) No
			Meter 1004891.16	Yes No
1244	MW-26	87.11	Flow 11.0	(Yes) No
			Meter 82551.10	Yes No
1204	TW4-19	64.88	Flow 18.00	Yes No
			Meter 425186.60	Yes No
1241	TW4-20	63.86	Flow 7.0	(Yes) No
			Meter 133118,30	(es) No
1323	TW4-4	76.44	Flow II.o	(FeS) No
			Meter 332882.70	(Yes) No
1225	TWN-2	33.60	Flow 18.4	Yes\ No
			Meter 627831.40	Tes No
1735	TW4-22	58.55	Flow 18.0	(Pes) No
			Meter 317227.56	Yes No
1233	TW4-24	62.09	Flow 16.6	(es) No
			Meter 114195.50	(Yes) No
1222	TW4-25	81.17	Flow 14.4	(Yes) No
		-	Meter 1565862,70	Yes No
1370	TW4-1	98.95	Flow 16.0	Xes No
	1111		Meter 119447.70	Yes No
1314	TW4-2	89,93	Flow 17-0	(Yes) No
			Meter 117866.60	Yes No
1311	TW4-11	92.31	Flow 16.0	Yes No
			Meter 27918.90	(Yes) No
1219	TW4-21	67.90	Flow 16.0	(PS, No
			Meter 464254.24	(Yes) No
1238	TW4-37	64.50	Flow 17.0	Yes No
			Meter 413845.50	(Yes) No

Operational Problems (Please I st well num	ber):	
Corrective Action(s) Taken (Please list well	number):	

^{*} Depth is measured to the nearest 0.01 feet.

Date 5/9/16

Name Garrin Palmer, Tanner Holliday

				System Operational (If no note
Time	Well	Depth*	Comments	any problems/corrective actions)
1515	MW-4	79.88	Flow 4.5	(Yes) No
			Meter 10/07/7.10	(Yes) No
1506	MW-26	63.47	Flow 8,4	Yes) No
-3			Meter 83842.70	Yes No
1430	TW4-19	64.22	Flow 18.0	(Yes) No
			Meter 432639.60	(Yes No
1503	TW4-20	64.36	Flow 7.2	(Yes) No
		1 7 2 2 2	Meter 134105.40	(es) No
1521	TW4-4	70.94	Flow 11.0	(Yes) No
			Meter 336508-60	Yes) No
1451	TWN-2	30.62	Flow 18.4	(Yes) No
			Meter 631050.20	(Yes) No
1458	TW4-22	58.45	Flow 17.5	(Yes) No
			Meter 313756.60	(Yes) No
1456	TW4-24	61.75	Flow 16.2	(Yes) No
			Meter 118130.86	(Yes) No
1448	TW4-25	63.13	Flow 15.0	(Yes) No
5			Meter 1573457, 40	(Yes) No
1518	TW4-1	84.45	Flow 15.2	(Yes) No
			Meter 120639.20	Yes No
1512	TW4-2	78.36	Flow 17.0	(Yes) No
			Meter 119199.90	Yes No
1509	TW4-11	90.97	Flow 16.0	(Yes) No
			Meter 28150.10	No No
1445	TW4-21	67.91	Flow 16.0	(Yes)No
			Meter 472370.76	(Yes) No
1501	TW4-37	62.67	Flow 17.0	(Yes) No
			Meter 421226.70	(Yes) No

Operational Problems (Please list well number):	
Corrective Action(s) Taken (Please list well number	r):

^{*} Depth is measured to the nearest 0.01 feet.

Date 5/16/16

Name Garrin Palmer, Tamer Holliday

Time	Well	Depth*	Comments	System Operational (If no note any problems/corrective actions)
1250	MW-4	79.53	Flow 4.5	(Yes) No
			Meter 1017336.31	(Yes) No
1241	MW-26	92.68	Flow 8.0	(Yes) No
			Meter 85416.70	Yes No
1310	TW4-19	66.44	Flow 18.0	Yes No
			Meter 441220.60	(Yes) No
1238	TW4-20	63.59	Flow 9.0	(Yes) No
		7 - 3 - 3 - 1	Meter 135295.36	(es) No
1256	TW4-4	74.84	Flow 11.0	(Yes) No
			Meter 340743.60	(Yes) No
1224	TWN-2	34.75	Flow 18.5	(Yes)No
			Meter 634654.40	Yes No
1233	TW4-22	58.16	Flow 17.0	(Yes) No
			Meter 321075.80	(Yes) No
1230	TW4-24	69.83	Flow 16.2	(Yes) No
			Meter 122625.27	(Yes) No
1220	TW4-25	87.15	Flow 14.4	(Yes) No
			Meter 1582270.00	(Yes) No
1253	TW4-1	94.10	Flow 16.1	(es) No
			Meter 122016.50	(Yes) No
1247	TW4-2	103.35	Flow 16.0	(Yes) No
			Meter 120543.80	Yes No
1244	TW4-11	92.34	Flow 16.0	Yes No
	1000	-	Meter 28411.30	Yes No
1216	TW4-21	67.70		(Yes) No
			Meter 481494.92	Yes No
1236	TW4-37	62.30	Flow 17.0	(Yes) No
		11	Meter -129478.70	Yes No

Operational Problems (Please list well number):				
Corrective Action(s) Taken (Please list well number)	y			

^{*} Depth is measured to the nearest 0.01 feet.

Date 5/23/16

Name Garrin Palmer, Tancer Holliday

Time	Well	Depth*	Comments	System Operational (If no note any problems/corrective actions)
	MW-4	80.65	Flow 4.4	Yes No
			Meter 1024294.23	(Tes) No
1425	MW-26	64.35	Flow 8.5	(Yes) No
			Meter 87066.60	(Yes) No
1540	TW4-19	6400	Flow 18.00	Yes) No
			Meter 450041.46	(Yes) No
1419	TW4-20	78.00		(Yes) No
			Meter 136320.97	(Yes) No
1507	TW4-4	74.75		(Yes')No
			Meter 345352.96	Yes No
1340	TWN-2	31.36	Flow 18.6	Yes No
			Meter 638277.40	(Yes) No
1359	TW4-22	96.00	Flow 16.0	Yes No
			Meter 3225 54,70	Yes No
1347	TW4-24	82.40		Yes No
			Meter 127261, 74	No No
1330	TW4-25	64.15	Flow 15.6	Yes) No
			Meter 1591099.10	Te3 No
1458	TW4-1	87.56	Flow 16.0	Yes No
		Y	Meter 123409.00	(Yes) No
1440	TW4-2	78,83		Yes No
			Meter 122002.60	Yes No
1430	TW4-11	91.39	Flow 16.0	(Yes) No
			Meter 28777.60	(es) No
1323	TW4-21	67.27		Yes No
			Meter 490770.21	(Yes) No
1409	TW4-37	31.68	Flow 16.4	Mes No
			Meter 437965.30	Kes No

Operational Problems (Please list well number):				
Corrective Action(s) Taken (Please list well number):				

^{*} Depth is measured to the nearest 0.01 feet.

Monthly Depth Check Form

ime	Well	Depth*	Time	Well	Depth*
1001	MW-4	80.32	1100	TWN-1	62,43
1002	TW4-1	85.76	1058	TWN-2	32.48
005	TW4-2	78.82	1056	TWN-3	39,16
957	TW4-3	57.05	1054	TWN-4	55.22
003	TW4-4	74.97	1047	TWN-7	86.21
322	TW4-5	64.66	1051	TWN-18	60,21
004	TW4-6	72.32	1044	MW-27	54,05
200	TW4-7	76.16	1033	MW-30	75.06
00	TW4-8	79.02	1030	MW-31	68.15
956	TW4-9	62.47			
154	TW4-10	62.07			
24	TW4-11	92.35			
16	TW4-12	45,92			
150	TW4-13	51.99	1018	TW4-28	40.00
807	TW4-14	79.70	1009	TW4-29	73,72
19	TW4-15	64.72	0813	TW4-30	75.65
858	TW4-16	43.94	1013	TW4-31	79.20
27	TW4-17	77.18	1019	TW4-32	51.13
2	TW4-18	65.47	1007	TW4-33	72,56
30	TW4-19	65.34	0733	TW4-34	71,80
6	TW4-20	66.51	0740	TW4-35	73,94
03	TW4-21	67.30	1014	TW4-36	56.42
12	TW4-22	58.20	1114	TW4-37	64.66
748	TW4-23	69.40			
10	TW4-24	69.05			
05	TW4-25	65,04			
754	TW4-26	66.98			
1080	TW4-27	79.85			

^{*} Depth is measured to the nearest 0.01 feet

Date 6/2/2016

Name Tanner Holliday

				System Operational (If no note
Time	Well	Depth*	Comments	any problems/corrective actions)
0835	MW-4	81.36	Flow 4.3	Yes No
			Meter 1033411.16	(Yes) No
0580	MW-26	64.61	Flow 8.6	(Yés)No
			Meter 8914z.8	(Yes) No
0900	TW4-19	63.13	Flow 18.0	(Yes No
			Meter 4620 19.1	Yes No
0815	TW4-20	73.16	Flow 6.8	(Yes No
240		11.	Meter 378 48.07	Yes No
0845	TW4-4	72,49	Flow 10.8	(Yes) No
		JAME	Meter 351274.7	Yes) No
0751	TWN-2	32.54	Flow 18.0	Yes No
			Meter 643215.8	(Yes) No
0807	TW4-22	68,50	Flow 16.7	(Yes No
			Meter 642745.68	Yes No
0803	TW4-24	62,45	Flow 16.4	Yes No
			Meter 133789, X2	Yes No
0747	TW4-25	64.05	Flow 14.6	(Yes) No
			Meter 1603320.4	(Yes) No
0839	TW4-1	91,20	Flow 16.0	(Yes No
			Meter 125321.1	(Yes)No
0831	TW4-2	79.35	Flow 17.2	Yes No
		10	Meter 124063,4	Yes No
0828	TW4-11	92.16	Flow 17.5	Yes No
			Meter 29052.8	(Yes) No
0743	TW4-21	67.52	Flow 16.2	(Yes) No
		14	Meter 503618.03	(Yes) No
0811	TW4-37	69.52	Flow 17,50	(Yes) No
			Meter 449664.7	(Yes) No

Operational Problems (Please list well number):	
Corrective Action(s) Taken (Please list well number):	*

^{*} Depth is measured to the nearest 0.01 feet.

Date 6/6/16

Name Garrin Palmer, Tamer Holliday

				System Operational (If no note
	Well	Depth*	Comments	any problems/corrective actions)
1233	MW-4	79.85	Flow 4.5	(Yes) No
			Meter 1037695.43	(Yes) No
1224	MW-26	63.45	Flow 8-0	Yes No
			Meter 90158.60	Ves No
1304	TW4-19	68.99	Flow 18.2	Yes No
			Meter 467242.70	Yes No
1221	TW4-20	64.15	Flow 7.0	Yes No
			Meter 138594.73	Yes No
1239	TW4-4	73.62	Flow 11-0	(Yes) No
			Meter 353708.20	(Yes) No
1204	TWN-2	58.83	Flow 18.5	(Yes No
			Meter 645447.70	Yes No
1714	TW4-22	58.38	Flow 17.2	(Yes) No
			Meter 326670,40	Yes No
1210	TW4-24	68.93	Flow 16.0	(Yes) No
			Meter 136400.91	(es) No
1701	TW4-25	63.33		(Yes No
			Meter 1608504.66	(Yes No
1736	TW4-1	95.40	Flow 16.0	(Yes) No
			Meter 126119.70	Yes No
1230	TW4-2	78.40		Yes No
		10000000	Meter 124904.80	Yes No
1228	TW4-11	97.74		(Yes) No
			Meter 29295.20	Yes No
1158	TW4-21	68.14	Flow 16.0	Yes) No
			Meter 509235, 40	(Yes) No
1217	TW4-37	62.50	Flow 17.0	Yes No
			Meter 454575.30	(es) No

Operational Problems (Please list well			
Corrective Action(s) Taken (Please list	t well number):		

^{*} Depth is measured to the nearest 0.01 feet.

Date 6/13/16

Name Garrin Palmer

Time	Well	Depth*	Comments	System Operational (If no note any problems/corrective actions)
1417	MW-4	81.16	Flow 4.1	Yes No
		01.10	Meter 1044572.82	Pes No
1406	MW-26	63.78	Flow 8.0	Yes) No
			Meter 91657.60	YES No
1335	TW4-19	64.24	Flow 18.0	Yes No
			Meter 475908.30	(Yes) No
1402	TW4-20	63.75	Flow 7.0	Yes No
	11-1-1		Meter 139686.40	Yes No
1424	TW4-4	73.40	Flow 13.0	Yes No
			Meter 358159_60	Yes No
1339	TWN-2	37.43	Flow 18,4	Xes No
	No.		Meter 648916.70	Yes) No
1354	TW4-22	58,14	Flow 17.0	(Yes) No
			Meter 328540.40	(Yes) No
343	TW4-24	68.20	Flow 17-0	Mes No
			Meter 141008.56	(Yes) No
1335	TW4-25	64.39	Flow 14,4	Yes No
			Meter 1617,554.60	(Tes) No
1420	TW4-1	92.78		(Yes) No
			Meter 127592.00	Tes No
1414	TW4-2	81,40	Flow 16.8	Yes No
			Meter 126489.90	Yes No
1409	TW4-11	93.44	Flow 160	Yes No
			Meter 29453.30	(Tes No
1330	TW4-21	67.55		(Yes) No
		518540.80	Meter 518590.80	Yes No
1357	TW4-37	62.10	Flow 17.0	Yes) No
			Meter 4/2869, 76	(Yes) No

Operational Problems (Please list well number):	
Corrective Action(s) Taken (Please list well number)	

^{*} Depth is measured to the nearest 0.01 feet.

Date 6-27-16

Name Garrin Palmer

	500			System Operational (If no note
Time	Well	Depth*	Comments	any problems/corrective actions)
1310	MW-4	79.65		(Yes) No
			Meter 1053037.06	(Yes) No
1302	MW-26	72.95	Flow 7.4	Yes No
4		5	Meter 93561.50	(Fest No
1439	TW4-19	64.47	Flow 180	Yes No
			Meter 487(38.76	Yes No
1259	TW4-20	63.87	Flow 7.0	Yes) No
			Meter 141007.72	Yes No
1317	TW4-4	74.88	Flow 10.0	Xes No
			Meter 363522.50	Yes) No
1248	TWN-2	33.25	Flow . 18.7	Nes No
			Meter 6535	Yes No
1253	TW4-22	58.25	Flow 17.2	Xes No
			Meter 330801.20	Yes No
1250	TW4-24	64.80	Flow 16.0	(Yes)No
		2	Meter 148678,43	Yes No
1243	TW4-25	67.89	Flow 14.8	Yes) No
			Meter 1628752.00	Yes No
1313	TW4-1	100.50	Flow 16.0	(Yes) No
		1-16-6-4	Meter 129213.9à	(Yes) No
307	TW4-2	93.21	Flow 16.2	(Yes) No
			Meter 128361.30	Yes No
1304	TW4-11	92.32		Yes No
			Meter 29777.60	Me No
239	TW4-21	67.82		Yes No
			Meter 530467.85	(Yes) No
1257	TW4-37	62.24	Flow 17.0	Yes No
			Meter 47358Z.80	Yes No

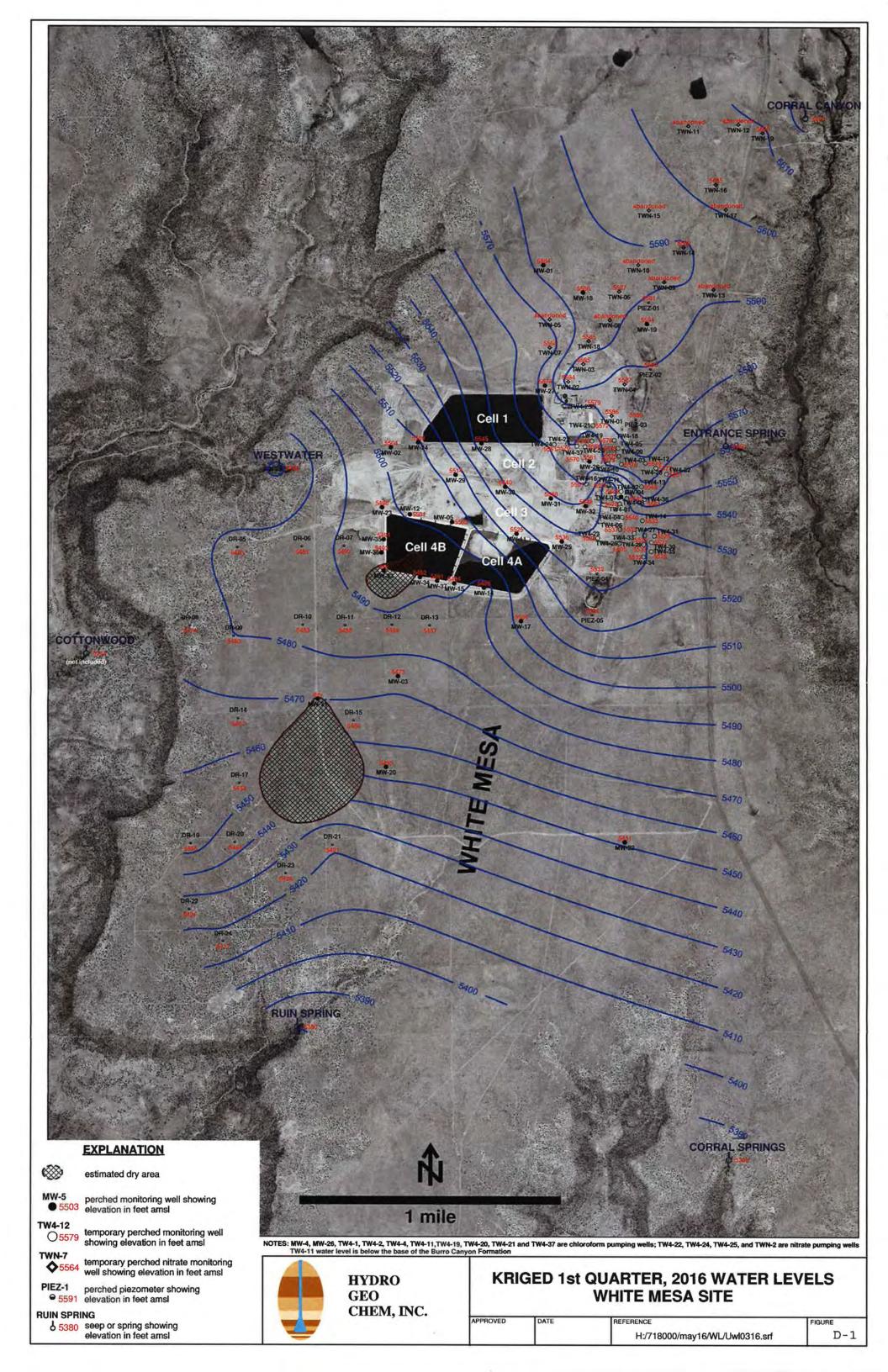
Operational Problems (Please list well number):	
Corrective Action(s) Taken (Please list well number):	

^{*} Depth is measured to the nearest 0.01 feet.

Weekly Inspection Form

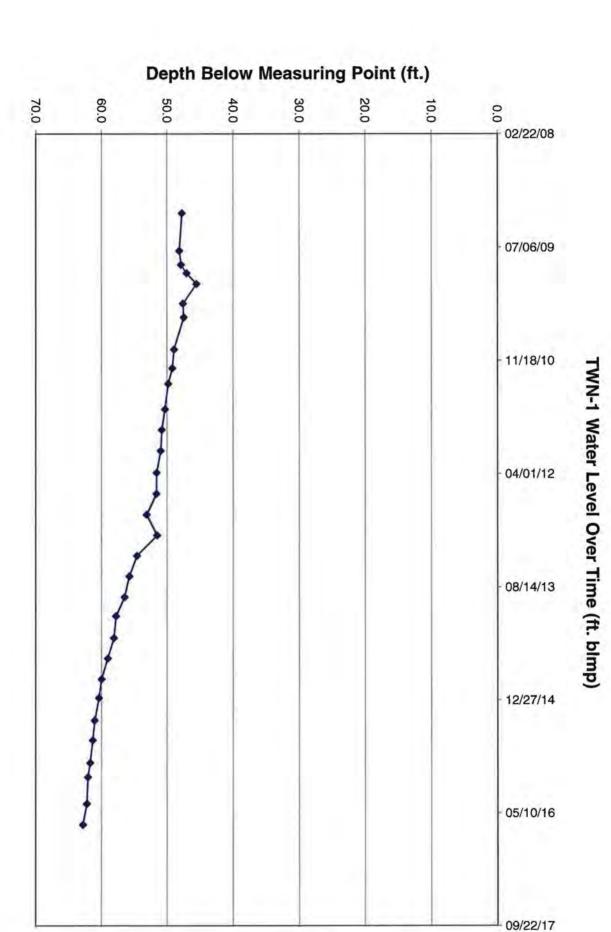
Date 6/27/16

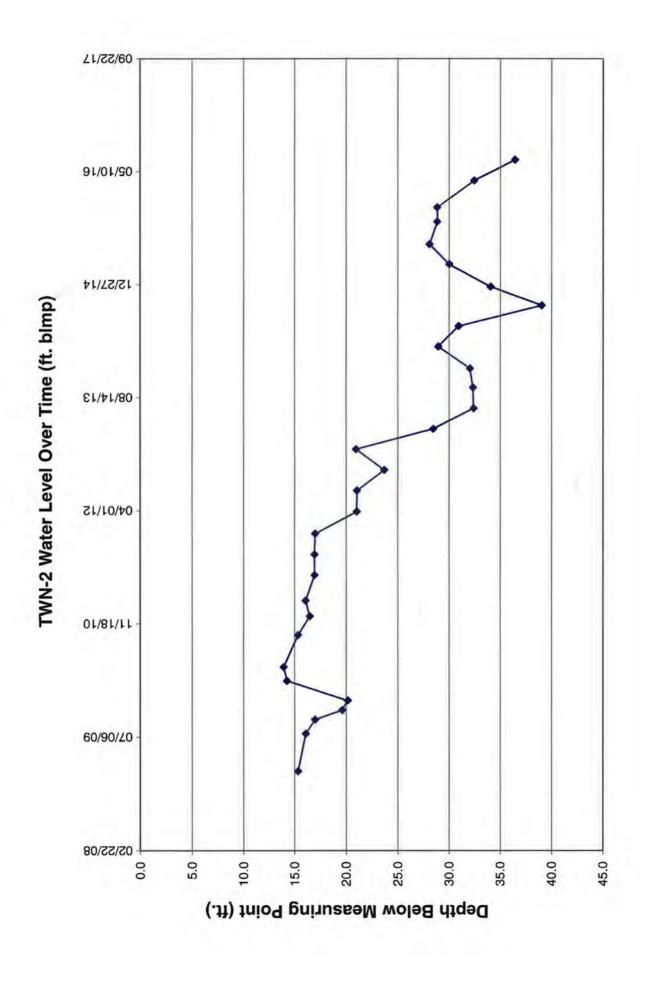
Name Garrin Palmer

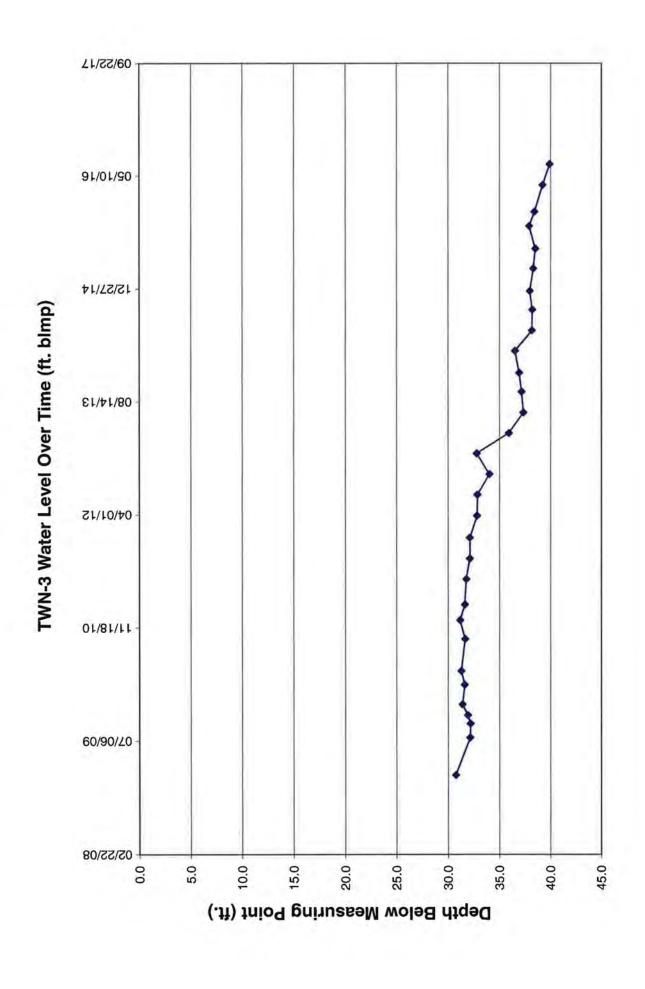

Time	M-II	Daniel		System Operational (If no note		
Time	Well	Depth*	Comments	any problems/corrective actions)		
1036	MW-4	79.68	Flow 4.4	Yes No		
			Meter 1057731.25	Mes No		
1028	MW-26	66.62	Flow 7.5	(Yes No		
	76.00		Meter 94571.60	Yes No		
0954	TW4-19	76.22	Flow 18.0	Yes No		
			Meter 492914.00	Yes No		
1026	TW4-20	64.00	Flow 7.0	Yes No		
			Meter 141876.40	(Yes) No		
1044	TW4-4	79.68	Flow 10.4	Yes No		
		74.21	Meter +4577317	Yes No		
1013	TWN-2	33,40	366586.90 Flow 18.2	Yes No		
101.5	17.7.4	350(10	Meter 656017.90	(Yes) No		
1019	TW4-22	58.36	Flow 17.0	Yes No		
			Meter 332109.30	(Fes) No		
1017	TW4-24	62.12	Flow 16.0	Yes No		
			Meter 150621.06	(Yes) No		
1009	TW4-25	65.42	Flow 15.0	Yes No		
		4 2 4 3	Meter 1634970.70	Tes No		
1040	TW4-1	97.70	Flow 16-0	(Yes) No		
			Meter 130130-20	Yes No		
1033	TW4-2	85.73	Flow 16. Z	(Yes) No		
	-1		Meter 129369.60	(res) No		
1030	TW4-11	95.15	Flow 16.0	(Yes) No		
			Meter 29967.00	Yes No		
1006	TW4-21	67.88	Flow 15.9	Yes No		
	1 - Y-		Meter 536872-27	(Yes) No		
1022	TW4-37	62.41	Flow 17.0	Yes No		
		The second	Meter 479368.30	(Yes) No		

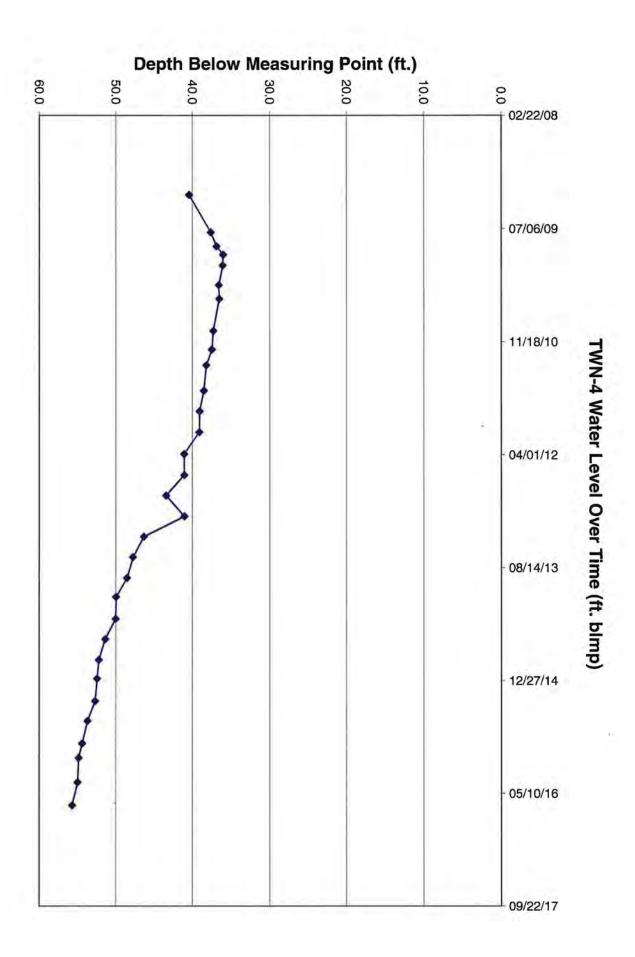
Operational Problems (Please list well number):	
Corrective Action(s) Taken (Please list well number):	

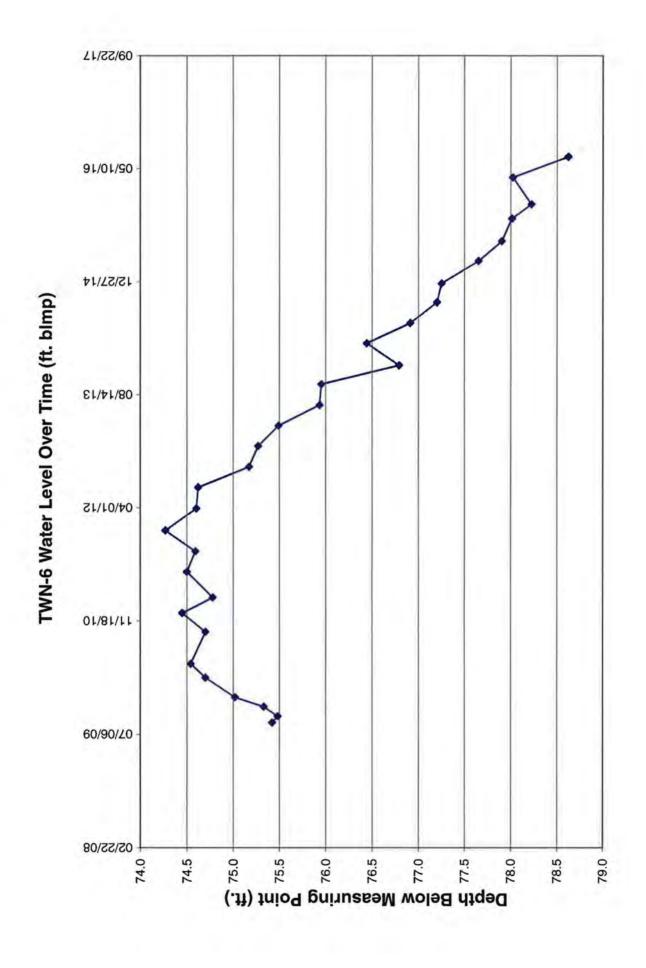
^{*} Depth is measured to the nearest 0.01 feet.

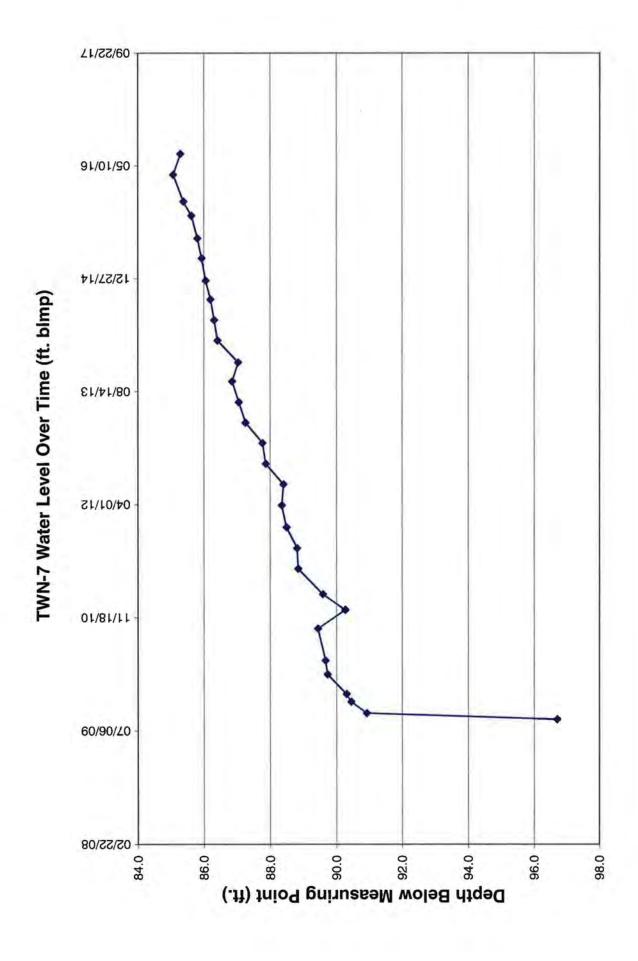

Tab D

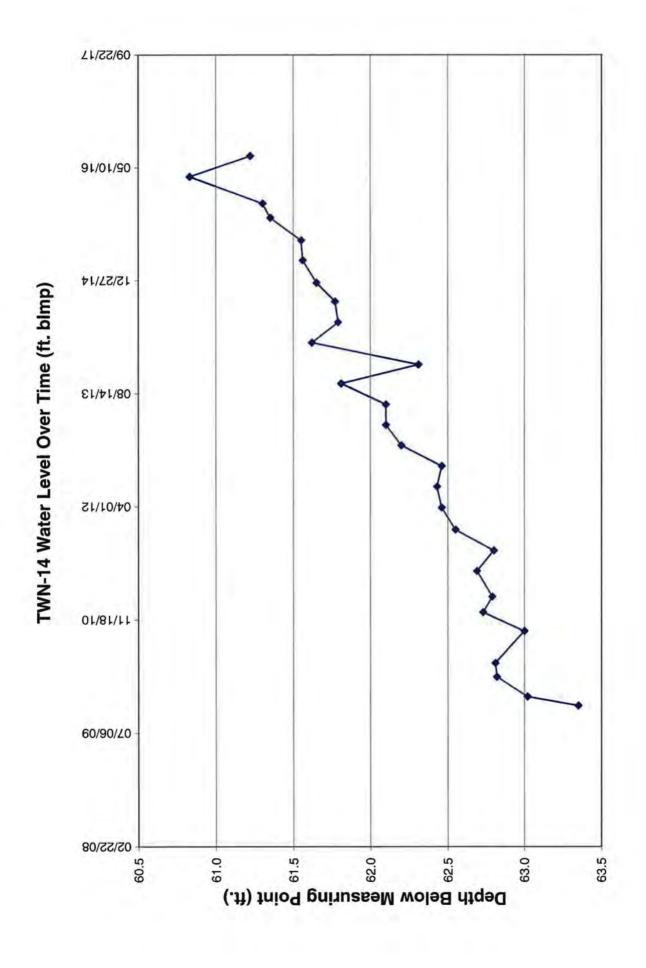

Kriged Previous Quarter Groundwater Contour Map

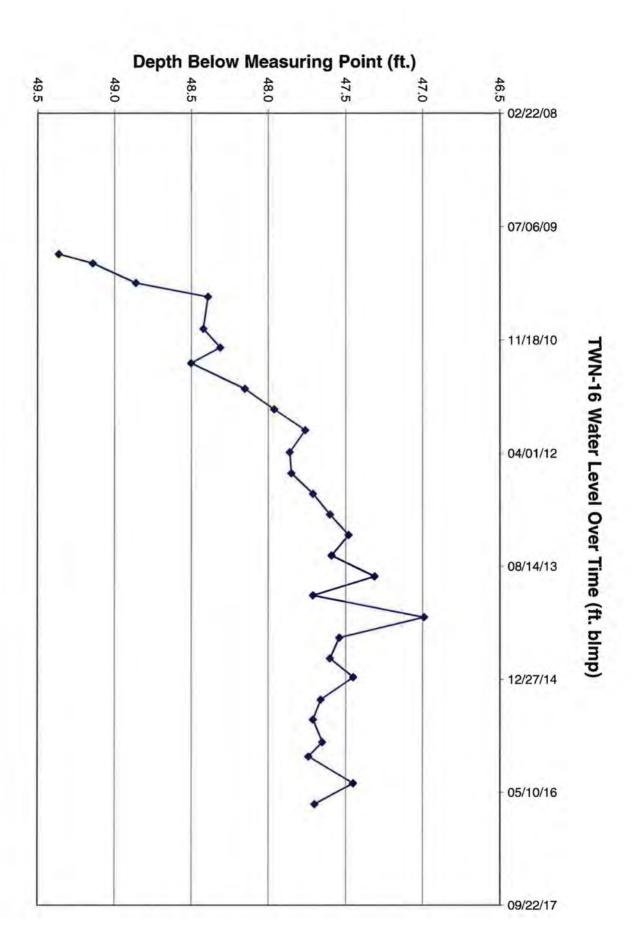


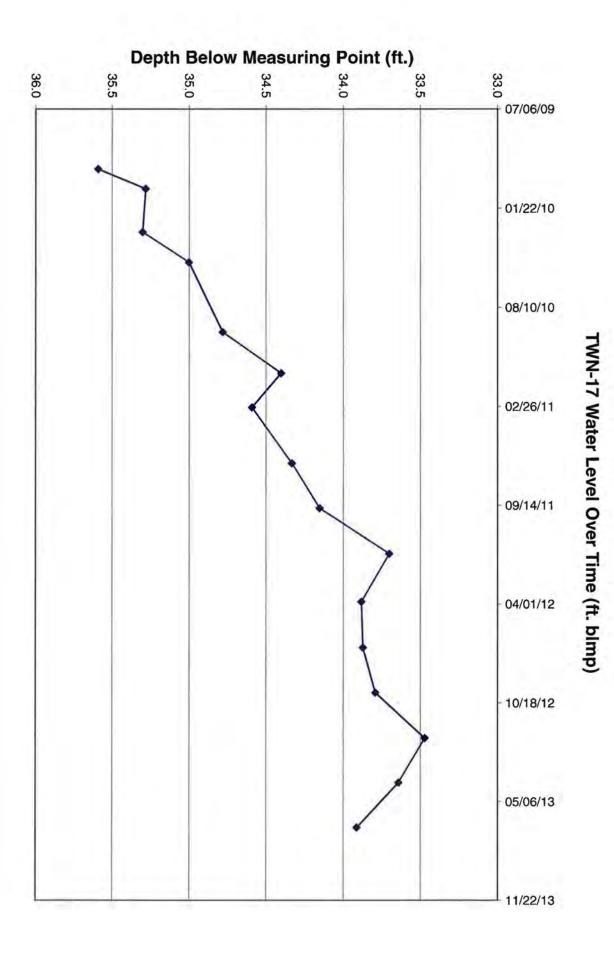

Tab E

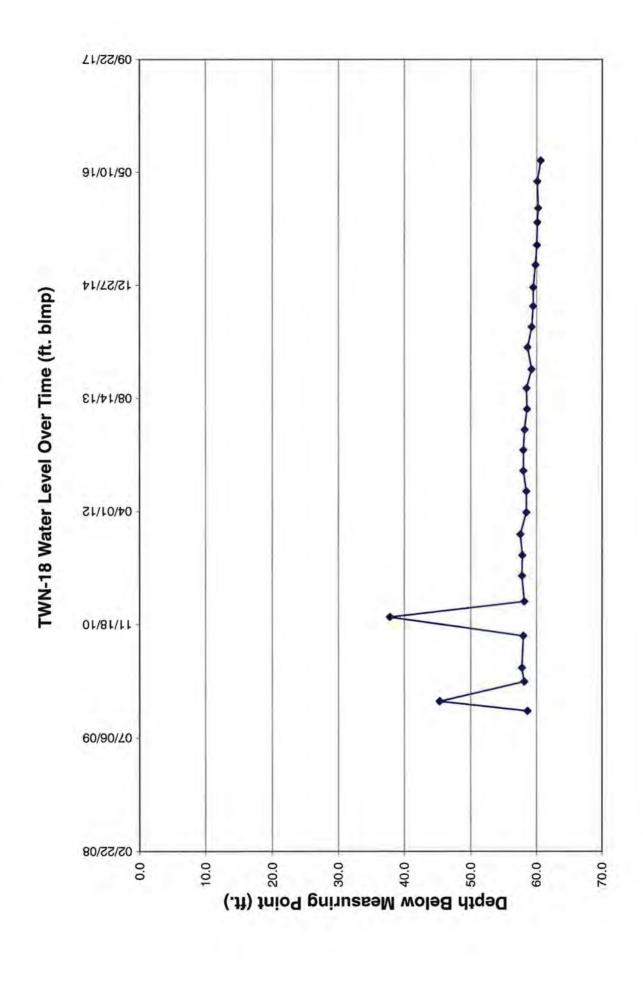

Hydrographs of Groundwater Elevations Over Time for Nitrate Monitoring Wells

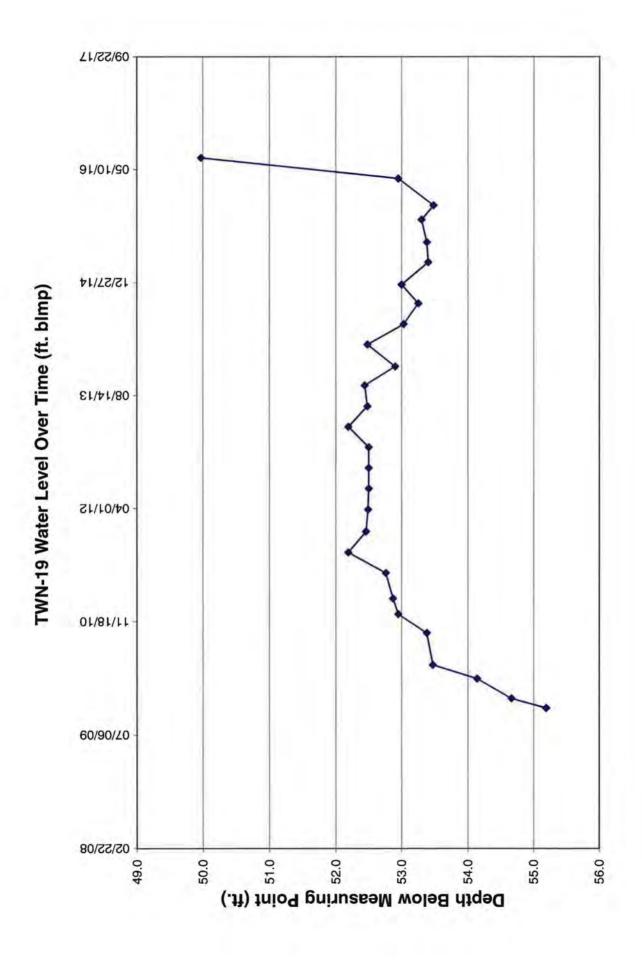


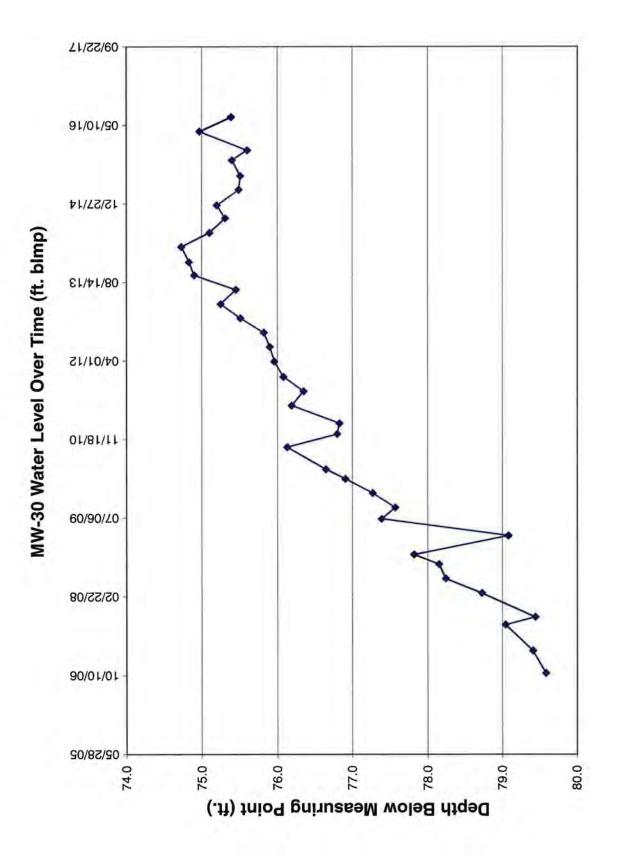


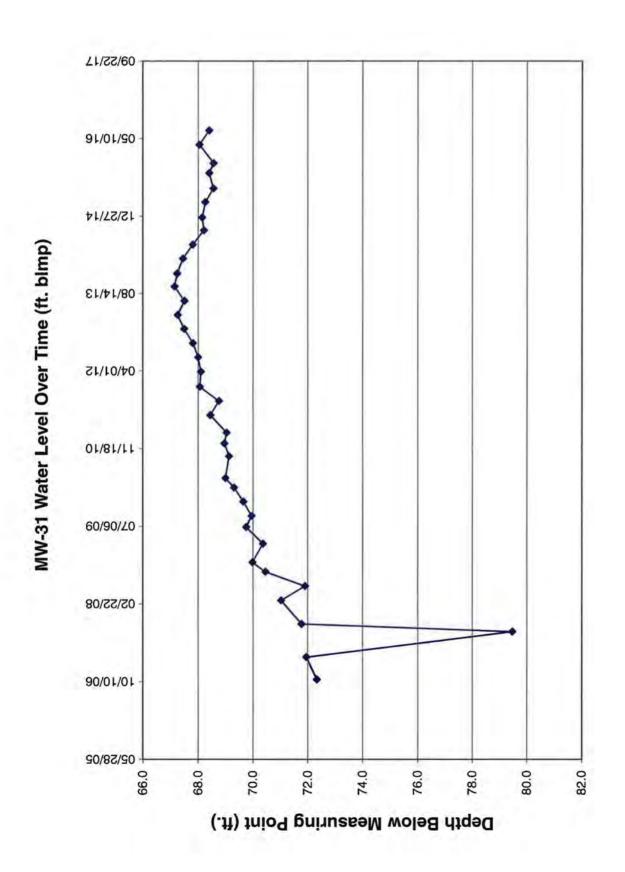












Tab F

Depths to Groundwater and Elevations Over Time for Nitrate Monitoring Wells

		VV 1111	e Mesa Mi	m - wen i v	A14-1		
					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,646.96	5,648.09	1.13				112.5
5,600.38				02/06/09	47.71	46.58	
5,599.99				07/21/09	48.10	46.97	
5,600.26				09/21/09	47.83	46.70	
5,601.10				10/28/09	46.99	45.86	
5,602.59				12/14/09	45.50	44.37	
5,600.55				03/11/10	47.54	46.41	
5,600.66				05/11/10	47.43	46.30	
5,599.18				09/29/10	48.91	47.78	
5,598.92				12/21/10	49.17	48.04	
5,598.29				02/28/11	49.80	48.67	
5,597.80				06/21/11	50.29	49.16	
5,597.32				09/20/11	50.77	49.64	
5,597.15				12/21/11	50.94	49.81	
5,596.54				03/27/12	51.55	50.42	
5,596.52				06/28/12	51.57	50.44	
5,595.03				09/27/12	53.06	51.93	
5,596.62				12/28/12	51.47	50.34	
5,593.54				03/28/13	54.55	53.42	
5,592.38				06/27/13	55.71	54.58	
5,591.65				09/27/13	56.44	55.31	
5,590.34				12/20/13	57.75	56.62	
5,590.03				03/27/14	58.06	56.93	
5,589.09				06/25/14	59.00	57.87	
5,588.15				09/25/14	59.94	58.81	
5,587.74				12/17/14	60.35	59.22	
5,587.09				03/26/15	61.00	59.87	
5,586.79				06/22/15	61.30	60.17	
5,586.39				09/30/15	61.70	60.57	
5,586.05				12/02/15	62.04	60.91	
5,585.89				03/30/16	62.20	61.07	
5,585.30				06/30/16	62.79	61.66	

		4 4 111 t	e iviesa ivii	II - MEII I A			
					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,625.75	5,626.69	0.94				95
5,611.37				02/06/09	15.32	14.38	
5,610.63				07/21/09	16.06	15.12	
5,609.73				09/21/09	16.96	16.02	
5,607.08				11/02/09	19.61	18.67	
5,606.57				12/14/09	20.12	19.18	
5,612.45				03/11/10	14.24	13.30	
5,612.78				05/11/10	13.91	12.97	
5,611.37				09/29/10	15.32	14.38	
5,610.24				12/21/10	16.45	15.51	
5,610.64				02/28/11	16.05	15.11	
5,609.78				06/21/11	16.91	15.97	
5609.79				09/20/11	16.90	15.96	
5609.72				12/21/11	16.97	16.03	
5,605.69				03/27/12	21.00	20.06	
5,605.67				06/28/12	21.02	20.08	
5,603.03				09/27/12	23.66	22.72	
5,605.76				12/28/12	20.93	19.99	
5,598.28				03/28/13	28.41	27.47	
5,594.32				06/27/13	32.37	31.43	
5,594.38				09/27/13	32.31	31.37	
5,594.68				12/20/13	32.01	31.07	
5,597.79				03/27/14	28.90	27.96	
5,595.80				06/25/14	30.89	29.95	
5,587.67				09/25/14	39.02	38.08	
5,592.66				12/17/14	34.03	33.09	
5,596.71				03/26/15	29.98	29.04	
5,598.64				06/22/15	28.05	27.11	
5,597.89				09/30/15	28.80	27.86	
5,597.89				12/02/15	28.80	27.86	
5,594.25				03/30/16	32.44	31.50	
5,590.26				06/30/16	36.43	35.49	

		** 1111	e iviesa ivii	II - VVCII I V			
					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,633.64	5,634.50	0.86				110
5,603.77				02/06/09	30.73	29.87	
5,602.37				07/21/09	32.13	31.27	
5,602.34				09/21/09	32.16	31.30	
5,602.60				10/28/09	31.90	31.04	
5,603.12				12/14/09	31.38	30.52	
5,602.90				03/11/10	31.60	30.74	
5,603.23				05/11/10	31.27	30.41	
5,602.86				09/29/10	31.64	30.78	
5,603.35				12/21/10	31.15	30.29	
5,602.89				02/28/11	31.61	30.75	
5,602.75				06/21/11	31.75	30.89	
5,602.40				09/20/11	32.10	31.24	
5,602.40				12/21/11	32.10	31.24	
5,601.70				03/27/12	32.80	31.94	
5,601.67				06/28/12	32.83	31.97	
5,600.50				09/27/12	34.00	33.14	
5,601.74				12/28/12	32.76	31.90	
5,598.60				03/28/13	35.90	35.04	
5,597.18				06/27/13	37.32	36.46	
5,597.36				09/27/13	37.14	36.28	
5,597.60				12/20/13	36.90	36.04	
5,598.00				03/27/14	36.50	35.64	
5,596.34				06/25/14	38.16	37.30	
5,596.30				09/25/14	38.20	37.34	
5,596.55				12/17/14	37.95	37.09	
5,596.20				03/26/15	38.30	37.44	
5,596.00				06/22/15	38.50	37.64	
5,596.61				09/30/15	37.89	37.03	
5,596.09				12/02/15	38.41	37.55	
5,595.29				03/30/16	39.21	38.35	
5,594.61				06/30/16	39.89	39.03	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,641.04	5,641.87	0.83				136
5,601.47				02/06/09	40.40	39.57	
5,604.26				07/21/09	37.61	36.78	
5,605.02				09/21/09	36.85	36.02	
5,605.87				10/28/09	36.00	35.17	
5,605.81				12/14/09	36.06	35.23	
5,605.31				03/11/10	36.56	35.73	
5,605.36				05/11/10	36.51	35.68	
5,604.59				09/29/10	37.28	36.45	
5,604.42				12/21/10	37.45	36.62	
5,603.69				02/28/11	38.18	37.35	
5,603.36				06/21/11	38.51	37.68	
5,602.82				09/20/11	39.05	38.22	
5,602.79				12/21/11	39.08	38.25	
5,600.82				03/27/12	41.05	40.22	
5,600.84				06/28/12	41.03	40.20	
5,598.47				09/27/12	43.40	42.57	
5,600.86				12/28/12	41.01	40.18	
5,595.57				03/28/13	46.30	45.47	
5,594.12				06/27/13	47.75	46.92	
5,593.33				09/27/13	48.54	47.71	
5,591.92				12/20/13	49.95	49.12	
5,591.85				03/27/14	50.02	49.19	
5,590.49				06/25/14	51.38	50.55	
5,589.64				09/25/14	52.23	51.40	
5,589.42				12/17/14	52.45	51.62	
5,589.17				03/26/15	52.70	51.87	
5,588.17				06/22/15	53.70	52.87	
5,587.48				09/30/15	54.39	53.56	
5,587.02				12/02/15	54.85	54.02	
5,586.90				03/20/16	54.97	54.14	
5,586.18				06/30/16	55.69	54.86	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,663.03	5,664.94	1.91				135
5,589.52				08/25/09	75.42	73.51	
5,589.46				09/22/09	75.48	73.57	
5,589.61				11/03/09	75.33	73.42	
5,589.92				12/14/09	75.02	73.11	
5,590.24				03/11/10	74.70	72.79	
5,590.40				05/11/10	74.54	72.63	
5,590.24				09/29/10	74.70	72.79	
5,590.49				12/21/10	74.45	72.54	
5,590.16				02/28/11	74.78	72.87	
5,590.44				06/21/11	74.50	72.59	
5,590.35				09/20/11	74.59	72.68	
5,590.67				12/21/11	74.27	72.36	
5,590.34				03/27/12	74.60	72.69	
5,590.32				06/28/12	74.62	72.71	
5,589.77				09/27/12	75.17	73.26	
5,589.67				12/28/12	75.27	73.36	
5,589.45				03/28/13	75.49	73.58	
5,589.01				06/27/13	75.93	74.02	
5,588.99				09/27/13	75.95	74.04	
5,588.15				12/20/13	76.79	74.88	
5,588.50				03/27/14	76.44	74.53	
5,588.03				06/25/14	76.91	75.00	
5,587.74				09/25/14	77.20	75.29	
5,587.69				12/17/14	77.25	75.34	
5,587.29				03/26/15	77.65	75.74	
5,587.04				06/22/15	77.90	75.99	
5,586.93				09/30/15	78.01	76.10	
5,586.72				12/02/15	78.22	76.31	
5,586.92				03/30/16	78.02	76.11	
5,586.32				06/30/16	78.62	76.71	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,647.39	5,649.26	1.87				120
5,552.56				08/25/09	96.70	94.83	
5,558.34				09/21/09	90.92	89.05	
5,558.82				11/10/09	90.44	88.57	
5,558.96				12/14/09	90.30	88.43	
5,559.54				03/11/10	89.72	87.85	
5,559.60				05/11/10	89.66	87.79	
5,559.83				09/29/10	89.43	87.56	
5,559.00				12/21/10	90.26	88.39	
5,559.68				02/28/11	89.58	87.71	
5,560.43				06/21/11	88.83	86.96	
5,560.46				09/20/11	88.80	86.93	
5,560.78				12/21/11	88.48	86.61	
5,560.92				03/27/12	88.34	86.47	
5,560.87				06/28/12	88.39	86.52	
5,561.40				09/27/12	87.86	85.99	
5,561.50				12/28/12	87.76	85.89	
5,562.01				03/28/13	87.25	85.38	
5,562.21				06/27/13	87.05	85.18	
5,562.41				09/27/13	86.85	84.98	
5,562.23				12/20/13	87.03	85.16	
5,562.85				03/27/14	86.41	84.54	
5,562.95				06/25/14	86.31	84.44	
5,563.06				09/25/14	86.20	84.33	
5,563.21				12/17/14	86.05	84.18	
5,563.33				03/26/15	85.93	84.06	
5,563.46				06/22/15	85.80	83.93	
5,563.64				09/30/15	85.62	83.75	
5,563.88				12/02/15	85.38	83.51	
5,564.19				03/30/16	85.07	83.20	
5,563.97				06/30/16	85.29	83.42	

		** 11100	WICSA WIII	1 - 44 CH 1 44			
					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,647.80	5,649.53	1.73				135
5,586.18				11/04/09	63.35	61.62	
5,586.51				12/14/09	63.02	61.29	
5,586.71				03/11/10	62.82	61.09	
5,586.72				05/11/10	62.81	61.08	
5,586.53				09/29/10	63.00	61.27	
5,586.80				12/21/10	62.73	61.00	
5,586.74				02/28/11	62.79	61.06	
5,586.84				06/21/11	62.69	60.96	
5,586.73				09/20/11	62.80	61.07	
5,586.98				12/21/11	62.55	60.82	
5,587.07				03/27/12	62.46	60.73	
5,587.10				06/28/12	62.43	60.70	
5,587.07				09/27/12	62.46	60.73	
5,587.33				12/28/12	62.20	60.47	
5,587.43				03/28/13	62.10	60.37	
5,587.43				06/27/13	62.10	60.37	
5,587.72				09/27/13	61.81	60.08	
5,587.22				12/20/13	62.31	60.58	
5,587.91				03/27/14	61.62	59.89	
5,587.74				06/25/14	61.79	60.06	
5,587.76				09/25/14	61.77	60.04	
5,587.88				12/17/14	61.65	59.92	
5,587.97				03/26/15	61.56	59.83	
5,587.98				06/22/15	61.55	59.82	
5,588.18				09/30/15	61.35	59.62	
5,588.23				12/02/15	61.30	59.57	
5,588.70				03/30/16	60.83	59.10	
5,588.31				06/30/16	61.22	59.49	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,651.07	5,652.70	1.63				100
5,603.34				11/04/09	49.36	47.73	
5,603.56				12/14/09	49.14	47.51	
5,603.84				03/11/10	48.86	47.23	
5,604.31				05/11/10	48.39	46.76	
5,604.28				09/29/10	48.42	46.79	
5,604.39				12/21/10	48.31	46.68	
5,604.20				02/28/11	48.50	46.87	
5,604.55				06/21/11	48.15	46.52	
5,604.74				09/20/11	47.96	46.33	
5,604.94				12/21/11	47.76	46.13	
5,604.84				03/27/12	47.86	46.23	
5,604.85				06/28/12	47.85	46.22	
5,604.99				09/27/12	47.71	46.08	
5,605.10				12/28/12	47.60	45.97	
5,605.22				03/28/13	47.48	45.85	
5,605.11				06/27/13	47.59	45.96	
5,605.39				09/27/13	47.31	45.68	
5,604.99				12/20/13	47.71	46.08	
5,605.71				03/27/14	46.99	45.36	
5,605.16				06/25/14	47.54	45.91	
5,605.10				09/25/14	47.60	45.97	
5,605.25				12/17/14	47.45	45.82	
5,605.04				03/26/15	47.66	46.03	
5,604.99				06/22/15	47.71	46.08	
5,605.05				09/30/15	47.65	46.02	
5,604.96				12/02/15	47.74	46.11	
5,605.25				03/30/16	47.45	45.82	
5,605.00				06/30/16	47.70	46.07	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,639.73	5,641.55	1.82				100
5,605.96				11/04/09	35.59	33.77	
5,606.27				12/14/09	35.28	33.46	
5,606.25				03/11/10	35.30	33.48	
5,606.55				05/11/10	35.00	33.18	
5,606.77				09/29/10	34.78	32.96	
5,607.15				12/21/10	34.40	32.58	
5,606.96				02/28/11	34.59	32.77	
5,607.22				06/21/11	34.33	32.51	
5,607.40				09/20/11	34.15	32.33	
5,607.85				12/21/11	33.70	31.88	
5,607.67				03/27/12	33.88	32.06	
5,607.68				06/28/12	33.87	32.05	
5,607.76				09/27/12	33.79	31.97	
5,608.08				12/28/12	33.47	31.65	
5,607.91				03/28/13	33.64	31.82	
5,607.64				06/27/13	33.91	32.09	

					Total or		
		Measuring			Measured	Total	
Water	Land	Point			Depth to	Depth to	Total
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well
	5,643.95	5,645.45	1.50				100
5,586.85				11/02/09	58.60	57.10	
5,600.14				12/14/09	45.31	43.81	
5,587.36				03/11/10	58.09	56.59	
5,587.71				05/11/10	57.74	56.24	
5,587.50				09/29/10	57.95	56.45	
5,607.66				12/21/10	37.79	36.29	
5,587.35				02/28/11	58.10	56.60	
5,587.71				06/21/11	57.74	56.24	
5,587.65				09/20/11	57.80	56.30	
5,587.95				12/21/11	57.50	56.00	
5,587.05				03/27/12	58.40	56.90	
5,587.05				06/28/12	58.40	56.90	
5,587.50				09/27/12	57.95	56.45	
5,587.50				12/28/12	57.95	56.45	
5,587.32				03/28/13	58.13	56.63	
5,586.95				06/27/13	58.50	57.00	
5,587.02				09/27/13	58.43	56.93	
5,586.26				12/20/13	59.19	57.69	
5,586.87				03/27/14	58.58	57.08	
5,586.23				06/25/14	59.22	57.72	
5,586.02				09/25/14	59.43	57.93	
5,585.99				12/17/14	59.46	57.96	
5,585.66				03/26/15	59.79	58.29	
5,585.45				06/22/15	60.00	58.50	
5,585.37				09/30/15	60.08	58.58	
5,585.24				12/02/15	60.21	58.71	
5,585.38				03/30/16	60.07	58.57	
5,584.85				6/30/2016	60.60	59.10	

	white Mesa Will - Well I WN-19										
					Total or						
		Measuring			Measured	Total					
Water	Land	Point			Depth to	Depth to	Total				
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of				
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well				
	5,659.59	5,661.36	1.77				110				
5,606.17				11/02/09	55.19	53.42					
5,606.70				12/14/09	54.66	52.89					
5,607.22				03/11/10	54.14	52.37					
5,607.89				05/11/10	53.47	51.70					
5,607.98				09/29/10	53.38	51.61					
5,608.41				12/21/10	52.95	51.18					
5,608.49				02/28/11	52.87	51.10					
5,608.60				06/21/11	52.76	50.99					
5,609.17				09/20/11	52.19	50.42					
5,608.90				12/21/11	52.46	50.69					
5,608.87				03/27/12	52.49	50.72					
5,608.86				06/28/12	52.50	50.73					
5,608.86				09/27/12	52.50	50.73					
5,608.86				12/28/12	52.50	50.73					
5,609.17				03/28/13	52.19	50.42					
5,608.88				06/27/13	52.48	50.71					
5,608.92				09/27/13	52.44	50.67					
5,608.46				12/20/13	52.90	51.13					
5,608.88				03/27/14	52.48	50.71					
5,608.33				06/25/14	53.03	51.26					
5,608.11				09/25/14	53.25	51.48					
5,608.36				12/17/14	53.00	51.23					
5,607.96				03/26/15	53.40	51.63					
5,607.98				06/22/15	53.38	51.61					
5,608.06				09/30/15	53.30	51.53					
5,607.88				12/02/15	53.48	51.71					
5,608.41				03/30/16	52.95	51.18					
5,611.39				06/30/16	49.97	48.20					

	vy nite iviesa ivini - vy en ivi vy -50										
					Total or						
		Measuring			Measured	Total					
Water	Land	Point			Depth to	Depth to	Total				
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of				
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well				
	5,613.34	5,614.50	1.16				110				
5,534.92				10/24/2006	79.58	78.42					
5,535.09				3/16/2007	79.41	78.25					
5,535.46				8/27/2007	79.04	77.88					
5,535.06				10/15/2007	79.44	78.28					
5,535.78				3/15/2008	78.72	77.56					
5,536.26				6/15/2008	78.24	77.08					
5,536.35				9/15/2008	78.15	76.99					
5,536.68				11/15/2008	77.82	76.66					
5,535.42				3/15/2009	79.08	77.92					
5,537.11				6/30/2009	77.39	76.23					
5,536.93				9/10/2009	77.57	76.41					
5,537.23				12/11/2009	77.27	76.11					
5,537.59				3/11/2010	76.91	75.75					
5,537.85				5/11/2010	76.65	75.49					
5,538.37				9/29/2010	76.13	74.97					
5537.70				12/21/2010	76.8	75.64					
5537.67				2/28/2011	76.83	75.67					
5538.31				6/21/2011	76.19	75.03					
5538.15				9/20/2011	76.35	75.19					
5538.42				12/21/2011	76.08	74.92					
5538.54				3/27/2012	75.96	74.8					
5538.60				6/28/2012	75.9	74.74					
5538.68				9/27/2012	75.82	74.66					
5538.99				12/28/2012	75.51	74.35					
5539.25				3/28/2013	75.25	74.09					
5539.05				6/27/2013	75.45	74.29					
5539.60				9/27/2013	74.90	73.74					
5539.67				12/20/2013	74.83	73.67					
5539.77				3/27/2014	74.73	73.57					
5539.40				6/25/2014	75.10	73.94					
5539.19				9/25/2014	75.31	74.15					
5539.30				12/17/2014	75.20	74.04					
5539.01				3/26/2015	75.49	74.33					
5538.99				6/22/2015	75.51	74.35					
5539.10				9/30/2015	75.40	74.24					
5538.90				12/2/2015	75.60	74.44					
5539.53				3/30/2016	74.97	73.81					
5539.11				6/30/2016	75.39	74.23					

	white Mesa Mili - Well MW-31											
					Total or							
		Measuring			Measured	Total						
Water	Land	Point			Depth to	Depth to	Total					
Elevation	Surface	Elevation	Length Of	Date Of	Water	Water	Depth Of					
(WL)	(LSD)	(MP)	Riser (L)	Monitoring	(blw.MP)	(blw.LSD)	Well					
	5,615.26	5,616.40	1.14				130					
5,544.07				10/24/2006	72.33	71.19						
5,544.45				3/16/2007	71.95	70.81						
5,536.94				8/27/2007	79.46	78.32						
5,544.62				10/15/2007	71.78	70.64						
5,545.37				3/15/2008	71.03	69.89						
5,544.50				6/15/2008	71.90	70.76						
5,545.94				9/15/2008	70.46	69.32						
5,546.42				11/15/2008	69.98	68.84						
5,546.03				3/15/2009	70.37	69.23						
5,546.65				6/30/2009	69.75	68.61						
5,546.45				9/10/2009	69.95	68.81						
5,546.75				12/11/2009	69.65	68.51						
5,547.09				3/11/2010	69.31	68.17						
5,547.41				5/11/2010	68.99	67.85						
5,547.28				9/29/2010	69.12	67.98						
5547.45				12/21/2010	68.95	67.81						
5547.37				2/28/2011	69.03	67.89						
5547.96				6/21/2011	68.44	67.3						
5547.65				9/20/2011	68.75	67.61						
5548.34				12/21/2011	68.06	66.92						
5548.30				3/27/2012	68.10	66.96						
5548.40				6/28/2012	68.00	66.86						
5548.59				9/27/2012	67.81	66.67						
5548.91				12/28/2012	67.49	66.35						
5549.14				3/28/2013	67.26	66.12						
5548.90				6/27/2013	67.50	66.36						
5549.25				9/27/2013	67.15	66.01						
5549.16				12/20/2013	67.24	66.10						
5548.95				3/27/2014	67.45	66.31						
5548.60				6/25/2014	67.80	66.66						
5548.19				9/25/2014	68.21	67.07						
5548.25				12/17/2014	68.15	67.01						
5548.14				3/26/2015	68.26	67.12						
5547.85				6/22/2015	68.55	67.41						
5548.00				9/30/2015	68.40	67.26						
5547.84				12/2/2015	68.56	67.42						
5548.35				3/30/2016	68.05	66.91						
5548.00				6/30/2016	68.40	67.26						
22.0.00				0.00.2010	00.10	07.20						

Tab G Laboratory Analytical Reports

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

2nd Quarter Nitrate 2016

Project: Lab Sample ID:

1605437-009

Client Sample ID: Piez-01 05172016

Collection Date: Received Date:

5/17/2016 1331h 5/20/2016 940h

Analytical Results

3440 South 700 West Salt Lake City, UT 84119

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		5/25/2016 2315h	E300.0	10.0	59.1	
Nitrate/Nitrite (as N)	mg/L		5/31/2016 1536h	E353.2	0.100	6.33	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

3-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Contact: Garrin Palmer

Client: Project: Energy Fuels Resources, Inc.

2nd Quarter Nitrate 2016

Lab Sample ID: 1605437-010

Client Sample ID: Piez-02_05172016 Collection Date: 5/17/2016 1317h Received Date: 5/20/2016 940h

Analytical Results

3440 South 700 West Salt Lake City, UT 84119

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		5/25/2016 2332h	E300.0	10.0	14.0	
Nitrate/Nitrite (as N)	mg/L		5/31/2016 1537h	E353.2	0.100	0.665	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

3-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Client:

Energy Fuels Resources, Inc.

Contact: Garrin Palmer

Project:

2nd Quarter Nitrate 2016

Lab Sample ID:

1605437-011

Client Sample ID: Piez-03A 05172016 **Collection Date:**

5/17/2016 1400h

Received Date:

5/20/2016 940h

Analytical Results

3440 South 700 West Salt Lake City, UT 84119

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		5/26/2016 022h	E300.0	10.0	109	
Nitrate/Nitrite (as N)	mg/L		5/31/2016 1538h	E353.2	0.100	8.23	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Contact: Garrin Palmer

Client: Energy Fuels Resources, Inc.

Project: 2nd Quarter Nitrate 2016

Lab Sample ID: 1605437-003

Client Sample ID: TWN-01_05172016 Collection Date: 5/17/2016 911h Received Date: 5/20/2016 940h

Analytical Results

3440 South 700 West Salt Lake City, UT 84119

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		5/25/2016 2207h	E300.0	10.0	32,1	
Nitrate/Nitrite (as N)	mg/L		5/31/2016 1523h	E353.2	0.100	1.73	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Contact: Garrin Palmer

Client: Energy Fuels Resources, Inc.

Project: 2nd Quarter Nitrate 2016

Lab Sample ID: 1605437-006

Client Sample ID: TWN-02_05172016 Collection Date: 5/17/2016 1310h Received Date: 5/20/2016 940h

Analytical Results

3440 South 700 West Salt Lake City, UT 84119

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		5/25/2016 2241h	E300.0	10.0	74.5	
Nitrate/Nitrite (as N)	mg/L		5/31/2016 1539h	E353.2	1.00	45.4	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

=-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Contact: Garrin Palmer

Client: Energy Fuels Resources, Inc.

Project: 2nd Quarter Nitrate 2016

Lab Sample ID: 1605437-005

Client Sample ID: TWN-03_05182016 Collection Date: 5/18/2016 805h Received Date: 5/20/2016 940h

Analytical Results

3440 South 700 West 3alt Lake City, UT 84119

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		5/25/2016 2100h	E300,0	100	116	
Nitrate/Nitrite (as N)	mg/L		5/31/2016 1527h	E353.2	0.100	13.5	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

≥-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 6/3/2016 Page 8 of 19

Contact: Garrin Palmer

Client: Energy Fuels Resources, Inc.

Project: 2nd Quarter Nitrate 2016

Lab Sample ID: 1605437-004

Client Sample ID: TWN-04_05172016 Collection Date: 5/17/2016 946h Received Date: 5/20/2016 940h

Analytical Results

3440 South 700 West Salt Lake City, UT 84119

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		5/25/2016 2224h	E300.0	10.0	31.7	
Nitrate/Nitrite (as N)	mg/L		5/31/2016 1526h	E353.2	0.100	2.97	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

2-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 6/3/2016 Page 7 of 19

Contact: Garrin Palmer

Client: Energy Fuels Resources, Inc.

Project: 2nd Quarter Nitrate 2016
Lab Sample ID: 1605437-001

Lab Sample ID: 1605437-001

Client Sample ID: TWN-07_05182016 Collection Date: 5/18/2016 757h Received Date: 5/20/2016 940h

Analytical Results

3440 South 700 West 3alt Lake City, UT 84119

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		5/26/2016 113h	E300.0	1.00	6.26	
Nitrate/Nitrite (as N)	mg/L		5/31/2016 1345h	E353.2	0.100	0.732	1

¹⁻ Matrix spike recovery indicates matrix interference. The method is in control as indicated by the LCS.

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

≥-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Client:

Energy Fuels Resources, Inc.

Contact: Garrin Palmer

Project:

2nd Quarter Nitrate 2016

Lab Sample ID:

1605437-012 Client Sample ID: TWN-07R 05172016

Collection Date:

5/17/2016 723h

Received Date:

5/20/2016 940h

Analytical Results

3440 South 700 West 3alt Lake City, UT 84119

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		5/26/2016 056h	E300.0	1.00	< 1.00	
Nitrate/Nitrite (as N)	mg/L		5/31/2016 1538h	E353.2	0.100	< 0.100	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

≥-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

> > Report Date: 6/3/2016 Page 15 of 19

Contact: Garrin Palmer

Client: Energy Fuels Resources, Inc.

Project: 2nd Quarter Nitrate 2016

Lab Sample ID: 1605437-002

Client Sample ID: TWN-18_05172016 Collection Date: 5/17/2016 835h Received Date: 5/20/2016 940h

Analytical Results

3440 South 700 West 3alt Lake City, UT 84119

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		5/25/2016 2151h	E300.0	10.0	69.9	
Nitrate/Nitrite (as N)	mg/L		5/31/2016 1348h	E353.2	0.100	0.497	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

2-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

Project:

2nd Quarter Chloroform 2016

Lab Sample ID:

1605584-027

Collection Date:

Received Date:

Client Sample ID: TW4-22_05232016 5/23/2016 1400h

5/27/2016 1035h

Analytical Results

3440 South 700 West Salt Lake City, UT 84119

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		6/1/2016 2216h	E300.0	100	598	
Nitrate/Nitrite (as N)	mg/L		6/8/2016 1454h	E353.2	1.00	58.4	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

3-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Contact: Garrin Palmer

Client: Energy Fuels Resources, Inc.

Project: 2nd Quarter Chloroform 2016

Lab Sample ID: 1605584-018

 Client Sample ID:
 TW4-24_05232016

 Collection Date:
 5/23/2016
 1351h

 Received Date:
 5/27/2016
 1035h

Analytical Results

3440 South 700 West Salt Lake City, UT 84119

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		6/1/2016 1209h	E300.0	100	771	
Nitrate/Nitrite (as N)	mg/L		6/8/2016 1432h	E353.2	1.00	24.2	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Contact: Garrin Palmer

Client: Energy Fuels Resources, Inc.

Project: 2nd Quarter Chloroform 2016

Lab Sample ID: 1605584-012

Client Sample ID: TW4-25_05232016 Collection Date: 5/23/2016 1335h Received Date: 5/27/2016 1035h

Analytical Results

3440 South 700 West 3alt Lake City, UT 84119

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		6/1/2016 1712h	E300.0	10.0	75.5	
Nitrate/Nitrite (as N)	mg/L		6/8/2016 1418h	E353.2	0.100	0.959	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

Project:

2nd Quarter Chloroform 2016

Lab Sample ID:

1606210-011

Client Sample ID: TW4-60 06082016 **Collection Date:**

Received Date:

6/8/2016

6/10/2016 1025h

Analytical Results

3440 South 700 West Salt Lake City, UT 84119

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		6/14/2016 2355h	E300.0	1.00	□1.00	
Nitrate/Nitrite (as N)	mg/L		6/15/2016 2229h	E353.2	0.100	□0.100	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

3-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Client:

Energy Fuels Resources, Inc.

Contact: Garrin Palmer

Project:

2nd Quarter Nitrate 2016 1605437-008

Lab Sample ID:

Client Sample ID: TWN-60 05182016

Collection Date:

5/18/2016 1345h

Received Date:

5/20/2016 940h

Analytical Results

3440 South 700 West 3alt Lake City, UT 84119

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		5/26/2016 039h	E300.0	1.00	< 1.00	
Nitrate/Nitrite (as N)	mg/L		5/31/2016 1530h	E353.2	0.100	< 0.100	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

z-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Contact: Garrin Palmer

Client:

Energy Fuels Resources, Inc.

Project:

2nd Quarter Nitrate 2016

Lab Sample ID:

1605437-007

Collection Date:

Client Sample ID: TWN-65_05172016

Received Date:

5/17/2016 835h 5/20/2016 940h

Analytical Results

3440 South 700 West 3alt Lake City, UT 84119

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Chloride	mg/L		5/25/2016 2258h	E300.0	10.0	69.4	
Nitrate/Nitrite (as N)	mg/L		5/31/2016 1529h	E353.2	0.100	0.486	

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Garrin Palmer Energy Fuels Resources, Inc. 6425 South Hwy 191 Blanding, UT 84511 TEL: (303) 389-4134

RE: 2nd Quarter Nitrate 2016

Dear Garrin Palmer:

Lab Set ID: 1605437

3440 South 700 West Salt Lake City, UT 84119

American West Analytical Laboratories received sample(s) on 5/20/2016 for the analyses presented in the following report.

Phone: (801) 263-8686

American West Analytical Laboratories (AWAL) is accredited by The National Environmental Laboratory Accreditation Program (NELAP) in Utah and Texas; and is state accredited in Colorado, Idaho, New Mexico, Wyoming, and Missouri.

Toll Free: (888) 263-8686 Fax: (801) 263-8687

state accredited in Colorado, Idano, New Mexico, wyoming, and Missouri.

3-mail: awal@awal-labs.com

All analyses were performed in accordance to the NELAP protocols unless noted otherwise. Accreditation scope documents are available upon request. If you have any questions or concerns regarding this report please feel free to call.

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha OA Officer

The abbreviation "Surr" found in organic reports indicates a surrogate compound that is intentionally added by the laboratory to determine sample injection, extraction, and/or purging efficiency. The "Reporting Limit" found on the report is equivalent to the practical quantitation limit (PQL). This is the minimum concentration that can be reported by the method referenced and the sample matrix. The reporting limit must not be confused with any regulatory limit. Analytical results are reported to three significant figures for quality control and calculation purposes.

Thank You,

Jose G. Rocha DN: cn=Jose G. Rocha, o=American West Analytical Laboratories, ou, email=jose@awal-labs.com, c=US Date: 2016.06.06.09:47:05-06'00'

Approved by:

Laboratory Director or designee

SAMPLE SUMMARY

Contact: Garrin Palmer

Client: Energy Fuels Resources, Inc.

Project: 2nd Quarter Nitrate 2016

Lab Set ID: 1605437

Date Received: 5/20/2016 940h

	Lab Sample ID	Client Sample ID	Date Colle	cted	Matrix	Analysis
3440 South 700 West	1605437-001A	TWN-07 05182016	5/18/2016	757h	Aqueous	Anions, E300.0
Salt Lake City, UT 84119	1605437-001B	TWN-07 05182016	5/18/2016	757h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1605437-002A	TWN-18 05172016	5/17/2016	835h	Aqueous	Anions, E300.0
	1605437-002B	TWN-18 05172016	5/17/2016	835h	Aqueous	Nitrite/Nitrate (as N), E353.2
Phone: (801) 263-8686	1605437-003A	TWN-01_05172016	5/17/2016	911h	Aqueous	Anions, E300.0
Toll Free: (888) 263-8686	1605437-003B	TWN-01_05172016	5/17/2016	911h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1605437-004A	TWN-04_05172016	5/17/2016	946h	Aqueous	Anions, E300.0
Fax: (801) 263-8687	1605437-004B	TWN-04_05172016	5/17/2016	946h	Aqueous	Nitrite/Nitrate (as N), E353.2
e-mail: awal@awal-labs.com	1605437-005A	TWN-03_05182016	5/18/2016	805h	Aqueous	Anions, E300.0
var turnen varran	1605437-005B	TWN-03_05182016	5/18/2016	805h	Aqueous	Nitrite/Nitrate (as N), E353.2
web: www.awal-labs.com	1605437-006A	TWN-02_05172016	5/17/2016	1310h	Aqueous	Anions, E300.0
	1605437-006B	TWN-02_05172016	5/17/2016	1310h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1605437-007A	TWN-65_05172016	5/17/2016	835h	Aqueous	Anions, E300.0
Kyle F. Gross	1605437-007B	TWN-65_05172016	5/17/2016	835h	Aqueous	Nitrite/Nitrate (as N), E353.2
Laboratory Director	1605437-008A	TWN-60_05182016	5/18/2016	1345h	Aqueous	Anions, E300.0
	1605437-008B	TWN-60_05182016	5/18/2016	1345h	Aqueous	Nitrite/Nitrate (as N), E353.2
Jose Rocha	1605437-009A	Piez-01_05172016	5/17/2016	1331h	Aqueous	Anions, E300.0
QA Officer	1605437-009B	Piez-01_05172016	5/17/2016	1331h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1605437-010A	Piez-02_05172016	5/17/2016	1317h	Aqueous	Anions, E300.0
	1605437-010B	Piez-02_05172016	5/17/2016	1317h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1605437-011A	Piez-03A_05172016	5/17/2016	1400h	Aqueous	Anions, E300.0
	1605437-011B	Piez-03A_05172016	5/17/2016	1400h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1605437-012A	TWN-07R_05172016	5/17/2016	723h	Aqueous	Anions, E300.0
	1605437-012B	TWN-07R_05172016	5/17/2016	723h	Aqueous	Nitrite/Nitrate (as N), E353.2

Inorganic Case Narrative

Client: Energy Fuels Resources, Inc.

Contact: Garrin Palmer

Project: 2nd Quarter Nitrate 2016 Lab Set ID: 2nd Quarter Nitrate 2016

3440 South 700 West

Salt Lake City, UT 84119

Phone: (801) 263-8686

Toll Free: (888) 263-8686

e-mail: awal@awal-labs.com

Fax: (801) 263-8687

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Sample Receipt Information:

Date of Receipt: 5/20/16

Date(s) of Collection: 5/17 & 5/18/2016

Sample Condition: Intact C-O-C Discrepancies: None

Holding Time and Preservation Requirements: The analysis and preparation for the samples were performed within the method holding times. The samples were properly preserved.

Preparation and Analysis Requirements: The samples were analyzed following the methods stated on the analytical reports.

Analytical QC Requirements: All instrument calibration and calibration check requirements were met. All internal standard recoveries met method criterion.

Batch QC Requirements: MB, LCS, MS, MSD, RPD:

Method Blanks (MB): No target analytes were detected above reporting limits, indicating that the procedure was free from contamination.

Laboratory Control Samples (LCS): All LCS recoveries were within control limits, indicating that the preparation and analysis were in control.

Matrix Spike / Matrix Spike Duplicates (MS/MSD): All percent recoveries and RPDs (Relative Percent Differences) were inside established limits, with the following exception: The MSD percent recoveries were outside of control limits for Nitrate/Nitrite on sample 1605437-001B due to sample matrix interference.

Corrective Action: None required.

3440 South 700 West

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F, Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Energy Fuels Resources, Inc.

Contact:

Garrin Palmer

Lab Set ID: 1605437

Client:

Dept: WC

Project: 2nd Quarter Nitrate 2016

QC Type: LCS

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: Test Code:	LCS-R90525 300.0-W	Date Analyzed:	05/25/20	16 1647h										
Chloride		5.23	mg/L	E300.0	0.00516	0.100	5.000	0	105	90 - 110				
Lab Sample ID: Test Code:	LCS-R90637 NO2/NO3-W-353.2	Date Analyzed:	05/31/20	16 1314h										
Nitrate/Nitrite (as	N)	0.959	mg/L	E353.2	0.00833	0.0100	1.000	0	95.9	90 - 110				
Lab Sample ID: Test Code:	LCS-R90644 NO2/NO3-W-353.2	Date Analyzed:	05/31/20	16 1522h										
Nitrate/Nitrite (as	N)	0.977	mg/L	E353.2	0.00833	0.0100	1.000	0	97.7	90 - 110				

3440 South 700 West

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Energy Fuels Resources, Inc.

Lab Set ID: 1605437

Client:

Project: 2nd Quarter Nitrate 2016

Contact: Garrin Palmer

Dept: WC

QC Type: MBLK

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qua
Lab Sample ID: Test Code:	MB-R90525 300.0-W	Date Analyzed:	05/25/201	16 1630h										
Chloride		< 0.100	mg/L	E300.0	0.00516	0.100								
Lab Sample ID: Test Code:	MB-R90637 NO2/NO3-W-353.2	Date Analyzed:	05/31/201	16 1313h										
Nitrate/Nitrite (as	s N)	< 0.0100	mg/L	E353.2	0.00833	0.0100								
Lab Sample ID: Test Code:	MB-R90644 NO2/NO3-W-353.2	Date Analyzed:	05/31/201	16 1521h										
Nitrate/Nitrite (as	s N)	< 0.0100	mg/L	E353.2	0.00833	0.0100								

3440 South 700 West

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Energy Fuels Resources, Inc.

Lab Set ID: 1605437

Project: 2nd Quarter Nitrate 2016

Contact: Garrin Palmer

Dept: WC QC Type: MS

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: Test Code:	1605437-005AMS 300.0-W	Date Analyzed:	05/25/20	16 2117h										
Chloride		1,180	mg/L	E300.0	1.03	20.0	1,000	116	106	90 - 110				
Lab Sample ID: Test Code:	1605437-001AMS 300.0-W	Date Analyzed:	05/26/20	16 130h										
Chloride		16.8	mg/L	E300,0	0.0103	0.200	10.00	6.26	105	90 - 110	1 1			
Lab Sample ID: Test Code:	1605437-001BMS NO2/NO3-W-353.2	Date Analyzed:	05/31/20	16 1346h										
Nitrate/Nitrite (as	N)	9.90	mg/L	E353,2	0.0833	0.100	10.00	0.732	91.6	90 - 110				
Lab Sample ID: Test Code:	1605437-003BMS NO2/NO3-W-353.2	Date Analyzed:	05/31/20	16 1524h										
Nitrate/Nitrite (as	N)	11.6	mg/L	E353,2	0.0833	0.100	10.00	1.73	99.1	90 - 110				

3440 South 700 West

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Energy Fuels Resources, Inc.

Lab Set ID: 1605437

Project: 2nd Quarter Nitrate 2016

Contact: Garrin Palmer

Dept: WC

QC Type: MSD

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: Test Code:	1605437-005AMSD 300.0-W	Date Analyzed:	05/25/20	16 2134h										
Chloride		1,160	mg/L	E300.0	1.03	20.0	1,000	116	105	90 - 110	1180	1.24	20	
Lab Sample ID: Test Code:	1605437-001AMSD 300.0-W	Date Analyzed:	05/26/20	16 146h										
Chloride		16.8	mg/L	E300.0	0.0103	0.200	10.00	6.26	105	90 - 110	16.8	0.248	20	
Lab Sample ID: Test Code:	1605437-001BMSD NO2/NO3-W-353.2	Date Analyzed:	05/31/20	16 1347h										
Nitrate/Nitrite (as	N)	9.02	mg/L	E353.2	0.0833	0.100	10.00	0.732	82.9	90 - 110	9.9	9.23	10	1
Lab Sample ID: Test Code:	1605437-003BMSD NO2/NO3-W-353.2	Date Analyzed:	05/31/20	16 1525h										
Nitrate/Nitrite (as	N)	11.7	mg/L	E353.2	0.0833	0.100	10.00	1.73	99.3	90 - 110	11.6	0.172	10	

^{1 -} Matrix spike recovery indicates matrix interference. The method is in control as indicated by the LCS.

American West Analytical Laboratories

WORK ORDER Summary

Work Order: 1605437

Page 1 of 2

Client:

Energy Fuels Resources, Inc.

Due Date: 6/1/2016

Client ID: Project:

DEN100

2nd Quarter Nitrate 2016

Contact: QC Level: Ш

Garrin Palmer

WO Type: Project

Comments:

PA Rush. QC 3 (Summary/No chromatograms). MUST report project specific DL's: Cl @ 1 mg/L, NO2/NO3 @ 0.1 mg/L. Run NO2/NO3 at 10X dilution.

EDD-Denison & LOCUS. Email Group; SAMPLES WITH AN "R" OR TWN-60 CAN NOT BE RUN BY 4500, THEY MUST BE RUN BY 300.0.;

Sample ID	Client Sample ID	Collected Date	Received Date	Test Code	Matrix	Sel	Storage	
605437-001A	TWN-07_05182016	5/18/2016 0757h	5/20/2016 0940h	300.0-W 1 SEL Analytes: CL	Aqueous		df - cl	1
1605437-001B				NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N			df - no2/no3	
1605437-002A	TWN-18_05172016	5/17/2016 0835h	5/20/2016 0940h	300.0-W 1 SEL Analytes: CL	Aqueous		df - cl	1
1605437-002B				NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N			df - no2/no3	
1605437-003A	TWN-01_05172016	5/17/2016 0911h	5/20/2016 0940h	300.0-W 1 SEL Analytes: CL	Aqueous		df - cl	ı
1605437-003B				NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N			df - no2/no3	
1605437-004A	TWN-04_05172016	5/17/2016 0946h	5/20/2016 0940h	300.0-W 1 SEL Analytes: CL	Aqueous	1	df-cl	1
1605437-004B				NO2/NO3-W-353.2 I SEL Analytes: NO3NO2N			df - no2/no3	
1605437-005A	TWN-03_05182016	5/18/2016 0805h	5/20/2016 0940h	300.0-W 1 SEL Analytes: CL	Aqueous		df - cl	á
1605437-005B				NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N			df - no2/no3	
1605437-006A	TWN-02_05172016	5/17/2016 1310h	5/20/2016 0940h	300.0-W 1 SEL Analytes: CL	Aqueous		df - cl	1
1605437-006B				NO2/NO3-W-353.2 I SEL Analytes: NO3NO2N			df - no2/no3	
1605437 - 007A	TWN-65_05172016	5/17/2016 0835h	5/20/2016 0940h	300.0-W 1 SEL Analytes; CL	Aqueous		df - cl	ı
1605437-007B				NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N	0		df-no2/no3	
1605437-008A	TWN-60_05182016	5/18/2016 1345h	5/20/2016 0940h	300.0-W 1 SEL Analytes: CL	Aqueous		df - cI	1

WORK ORDER Summary

Work Order: 1605437

Page 2 of 2

Due Date: 6/1/2016

Client:	Energy Fuels Resources, Inc.				ווע	e Date: 6/1/2016	
Sample ID	Client Sample ID	Collected Date	Received Date	Test Code	Matrix	Sel Storage	
1605437-008B	TWN-60_05182016	5/18/2016 1345h	5/20/2016 0940h	NO2/NO3-W-353.2	Aqueous	df - no2/no3	1
			TOTAL STATE OF THE	1 SEL Analytes: NO3NO2	?N		
1605437-009A	Piez-01_05172016	5/17/2016 1331h	5/20/2016 0940h	300.0-W	Aqueous	df - cl	1
				1 SEL Analytes: CL			
1605437-009B				NO2/NO3-W-353.2		df - no2/no3	
				1 SEL Analytes: NO3NO2	2N		
1605437-010A	Piez-02_05172016	5/17/2016 1317h	5/20/2016 0940h	300.0-W	Aqueous	df - cl	1
			3.00	1 SEL Analytes: CL			
1605437-010B				NO2/NO3-W-353.2		df - no2/no3	
				1 SEL Analytes: NO3NO	2N		
1605437-011A	Piez-03A_05172016	5/17/2016 1400h	5/20/2016 0940h	300.0-W	Aqueous	df - cl	1
				1 SEL Analytes: CL			
1605437 - 011B				NO2/NO3-W-353.2		df - no2/no3	-
				I SEL Analytes: NO3NO.	2N		
1605437-012A	TWN-07R_05172016	5/17/2016 0723h	5/20/2016 0940h	300.0-W	Aqueous	df - cl	1
				I SEL Analytes: CL			
1605437-012B				NO2/NO3-W-353.2		df - no2/no3	
				1 SEL Analytes: NO3NO	2N		

Print Name:

American West **Analytical Laboratories**

CHAIN	OF	CU	ST	0	D	Y
CHAIN			$\mathbf{O}_{\mathbf{I}}$	$\mathbf{\circ}$	u	

463 W. 3600 S. Salt Lake City, UT 84115 All analysis will be conducted using NELAP accredited methods and all data will be reported using AWAL's standard analyte lists and reporting limits (POL) unless specifically requested otherwise on this Chain of Custody and/or attached documentation. Phone # (801) 263-8686 Toll Free # (888) 263-8686 Due Date: QC Level: **Turn Around Time:** Fax # (801) 263-8687 Email awal@awal-labs.com Unless other arrangements have been made signed reports will be emailed by 5:00 pm on Standard the day they are due. www.awal-labs.com Laboratory Use Only Energy Fuels Resources, Inc. Include EDD: LOCUS UPLOAD 6425 S. Hwy. 191 EXCEL Samples Wera: Field Filtered For. Blanding, UT 84511 Contact: Garrin Palmer For Compliance With: (435) 678-2221 Cell #: 435 459 9463 I NELAP gpalmer@energyfnels.com; KWeinel@energyfuels.com; C RCRA CWA Received Broker/Leaking Email: dturk@energyfuels.com □ SDWA 2nd Quarter Nitrate 2016 □ ELAP / A2LA Project Name: ☐ NLLAP 300.0) (353.2)☐ Non-Compliance Project #: ☐ Other: 10 Sampler Name: Tanner Holliday NO2/NO3 (4500 Known Hazards Date 2 Sample Comments Sample ID: Sampled Sampled 5/18/2016 757 TWN-07_05182016 x x 5/17/2016 x 2 TWN-18_05172016 x COC Tape Was: Present on Outer Packa TWN-01_05172016 5/17/2016 911 x x TWN-04_05172016 5/17/2016 946 x x Unbroken on Outer Pa 5/18/2016 805 x TWN-03_05182016 X 3 Present on Sample 6 TWN-02_05172016 5/17/2016 1310 x x 5/17/2016 835 TWN-65_05172016 x x Unbroken on Sample 5/18/2016 1345 TWN-60_05182016 X x Piez-01_05172016 5/17/2016 1331 W x X Discrepancies Between Sample Labels and COC Recor Piez-02_05172016 5/17/2016 1317 x x 11 Piez-03A 05172016 5/17/2016 1400 x x 5/17/2016 TWN-07R 05172016 x x Temp Blank Relinquished by: Gami Palm Special Instructions: Signatura Garrin Palmer Print Name: Relinquished by Signature Signature Print Name: Print Name Relinquished by Received by: Signature Signature Time: Print Name: Print Name Signature Signature Time: Time:

Print Name:

Preservation Check Sheet

Lab Set ID: 1605437

pt Lot #5002

Sample Set Extension and nH

	r 						amples	Ct Exter	ision an	u pix							
Analysis	Preservative	-001	-002	-003	-004	-005	-006	-007	-008	-009	-010	-011	-012	2			
Ammonia	pH <2 H ₂ SO ₄																
COD	pH <2 H ₂ SO ₄																
Cyanide	pH >12 NaOH																
Metals	pH <2 HNO ₃																
NO ₂ & NO ₃	pH <2 H ₂ SO ₄	VRS	yes	VPG	YPG	yes	YPS	ves	Ve5	yes	Ves	Yes	405				
O & G	pH <2 HCL	1/	1	1	1	1	1	/	1	l		/	/			4	
Phenols	pH <2 H ₂ SO ₄																
Sulfide	pH > 9NaOH, Zn Acetate												181				
TKN	pH <2 H ₂ SO ₄																
T PO ₄	pH <2 H ₂ SO ₄																

Procedure:

- 1) Pour a small amount of sample in the sample lid
- 2) Pour sample from Lid gently over wide range pH paper
- 3) Do Not dip the pH paper in the sample bottle or lid
- 4) If sample is not preserved, properly list its extension and receiving pH in the appropriate column above
- 5) Flag COC, notify client if requested
- 6) Place client conversation on COC
- 7) Samples may be adjusted

Frequency:

All samples requiring preservation

- * The sample required additional preservative upon receipt.
- The sample was received unpreserved. +
- The sample was received unpreserved and therefore preserved upon receipt. lack
- # The sample pH was unadjustable to a pH \leq 2 due to the sample matrix.
- The sample pH was unadjustable to a pH > ____ due to the sample matrix interference.

Garrin Palmer Energy Fuels Resources, Inc. 6425 S. Hwy 191 Blanding, UT 84511

TEL: (303) 389-4134

RE: 2nd Quarter Chloroform 2016

3440 South 700 West

Salt Lake City, UT 84119

Dear Garrin Palmer: Lab Set ID: 1605584

American West Analytical Laboratories received sample(s) on 5/27/2016 for the analyses presented in the following report.

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

≥-mail: awal@awal-labs.com

web: www.awal-labs.com

American West Analytical Laboratories (AWAL) is accredited by The National Environmental Laboratory Accreditation Program (NELAP) in Utah and Texas; and is state accredited in Colorado, Idaho, New Mexico, Wyoming, and Missouri.

All analyses were performed in accordance to the NELAP protocols unless noted otherwise. Accreditation scope documents are available upon request. If you have any questions or concerns regarding this report please feel free to call.

Kyle F. Gross Laboratory Director

> Jose Rocha OA Officer

The abbreviation "Surr" found in organic reports indicates a surrogate compound that is intentionally added by the laboratory to determine sample injection, extraction, and/or purging efficiency. The "Reporting Limit" found on the report is equivalent to the practical quantitation limit (PQL). This is the minimum concentration that can be reported by the method referenced and the sample matrix. The reporting limit must not be confused with any regulatory limit. Analytical results are reported to three significant figures for quality control and calculation purposes.

Thank You.

Jose G. Rocha

DN: cn=Jose G. Rocha, o=American West Analytical Laboratories, ou, email=jose@awal-labs.com, c=US

Date: 2016 06 15 13:02:06

Digitally signed by Jose G.

Approved by:

Laboratory Director or designee

Rocha

-06'00'

SAMPLE SUMMARY

Project:

Energy Fuels Resources, Inc. 2nd Quarter Chloroform 2016

1605584

Date Received:

5/27/2016 1035h

Contact: Garrin Palmer

	Lab Sample ID	Client Sample ID	Date Colle	cted	Matrix	Analysis
3440 South 700 West	1605584-001A	TW4-03R_05242016	5/24/2016	704h	Aqueous	Anions, E300.0
Salt Lake City, UT 84119	1605584-001B	TW4-03R_05242016	5/24/2016	704h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1605584-001C	TW4-03R_05242016	5/24/2016	704h	Aqueous	VOA by GC/MS Method 8260C/5030C
Phone: (801) 263-8686	1605584-002A	TW4-03_05252016	5/25/2016	730h	Aqueous	Anions, E300.0
	1605584-002B	TW4-03_05252016	5/25/2016	730h	Aqueous	Nitrite/Nitrate (as N), E353.2
Fax: (801) 263-8687	1605584-002C	TW4-03_05252016	5/25/2016	730h	Aqueous	VOA by GC/MS Method 8260C/5030C
-mail: awal@awal-labs.com	1605584-003A	TW4-12_05252016	5/25/2016	740h	Aqueous	Anions, E300.0
	1605584-003B	TW4-12_05252016	5/25/2016	740h	Aqueous	Nitrite/Nitrate (as N), E353.2
web: www.awal-labs.com	1605584-003C	TW4-12_05252016	5/25/2016	740h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1605584-004A	TW4-28_05252016	5/25/2016	748h	Aqueous	Anions, E300.0
Valo F. Cursos	1605584-004B	TW4-28_05252016	5/25/2016	748h	Aqueous	Nitrite/Nitrate (as N), E353.2
Kyle F. Gross Laboratory Director	1605584-004C	TW4-28_05252016	5/25/2016	748h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1605584-005A	TW4-32_05252016	5/25/2016	753h	Aqueous	Anions, E300.0
Jose Rocha	1605584-005B	TW4-32_05252016	5/25/2016	753h	Aqueous	Nitrite/Nitrate (as N), E353.2
QA Officer	1605584-005C	TW4-32_05252016	5/25/2016	753h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1605584-006A	TW4-13_05252016	5/25/2016	758h	Aqueous	Anions, E300.0
	1605584-006B	TW4-13 05252016	5/25/2016	758h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1605584-006C	TW4-13_05252016	5/25/2016	758h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1605584-007A	TW4-36_05252016	5/25/2016	805h	Aqueous	Anions, E300.0
	1605584-007B	TW4-36_05252016	5/25/2016	805h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1605584-007C	TW4-36_05252016	5/25/2016	805h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1605584-008A	TW4-31_05252016	5/25/2016	813h	Aqueous	Anions, E300.0
	1605584-008B	TW4-31_05252016	5/25/2016	813h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1605584-008C	TW4-31_05252016	5/25/2016	813h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1605584-009A	TW4-34_05262016	5/26/2016	736h	Aqueous	Anions, E300.0
	1605584-009B	TW4-34_05262016	5/26/2016	736h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1605584-009C	TW4-34_05262016	5/26/2016	736h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1605584-010A	TW4-35_05262016	5/26/2016	743h	Aqueous	Anions, E300.0
	1605584-010B	TW4-35_05262016	5/26/2016	743h	Aqueous	Nitrite/Nitrate (as N), E353.2

Report Date: 6/15/2016 Page 2 of 82

Energy Fuels Resources, Inc. 2nd Quarter Chloroform 2016

Lab Set ID:

1605584

Date Received:

5/27/2016 1035h

Contact: Garrin Palmer

	Lab Sample ID	Client Sample ID	Date Colle	cted	Matrix	Analysis
arrie areas	1605584-010C	TW4-35_05262016	5/26/2016	743h	Aqueous	VOA by GC/MS Method 8260C/5030C
3440 South 700 West	1605584-011A	TW4-23_05262016	5/26/2016	751h	Aqueous	Anions, E300.0
Salt Lake City, UT 84119	1605584-011B	TW4-23 05262016	5/26/2016	751h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1605584-011C	TW4-23_05262016	5/26/2016	751h	Aqueous	VOA by GC/MS Method 8260C/5030C
Phone: (801) 263-8686	1605584-012A	TW4-25_05232016	5/23/2016	1335h	Aqueous	Anions, E300.0
	1605584-012B	TW4-25_05232016	5/23/2016	1335h	Aqueous	Nitrite/Nitrate (as N), E353.2
Fax: (801) 263-8687	1605584-012C	TW4-25_05232016	5/23/2016	1335h	Aqueous	VOA by GC/MS Method 8260C/5030C
e-mail: awal@awal-labs.com	1605584-013A	TW4-26_05262016	5/26/2016	757h	Aqueous	Anions, E300.0
	1605584-013B	TW4-26_05262016	5/26/2016	757h	Aqueous	Nitrite/Nitrate (as N), E353.2
web: www.awal-labs.com	1605584-013C	TW4-26_05262016	5/26/2016	757h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1605584-014A	TW4-27_05262016	5/26/2016	804h	Aqueous	Anions, E300.0
Valo E Carre	1605584-014B	TW4-27_05262016	5/26/2016	804h	Aqueous	Nitrite/Nitrate (as N), E353.2
Kyle F. Gross Laboratory Director	1605584-014C	TW4-27_05262016	5/26/2016	804h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1605584-015A	TW4-14_05262016	5/26/2016	810h	Aqueous	Anions, E300.0
Jose Rocha	1605584-015B	TW4-14_05262016	5/26/2016	810h	Aqueous	Nitrite/Nitrate (as N), E353.2
QA Officer	1605584-015C	TW4-14_05262016	5/26/2016	810h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1605584-016A	TW4-30_05262016	5/26/2016	816h	Aqueous	Anions, E300.0
	1605584-016B	TW4-30_05262016	5/26/2016	816h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1605584-016C	TW4-30_05262016	5/26/2016	816h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1605584-017A	TW4-05_05262016	5/26/2016	824h	Aqueous	Anions, E300.0
	1605584-017B	TW4-05_05262016	5/26/2016	824h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1605584-017C	TW4-05_05262016	5/26/2016	824h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1605584-018A	TW4-24_05232016	5/23/2016	1351h	Aqueous	Anions, E300.0
	1605584-018B	TW4-24_05232016	5/23/2016	1351h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1605584-018C	TW4-24_05232016	5/23/2016	1351h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1605584-019A	TW4-16_05262016	5/26/2016	830h	Aqueous	Anions, E300.0
	1605584-019B	TW4-16_05262016	5/26/2016	830h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1605584-019C	TW4-16_05262016	5/26/2016	830h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1605584-020A	TW4-21_05232016	5/23/2016	1325h	Aqueous	Anions, E300.0
	1605584-020B	TW4-21_05232016	5/23/2016	1325h	Aqueous	Nitrite/Nitrate (as N), E353.2

Energy Fuels Resources, Inc.

Project:

2nd Quarter Chloroform 2016

Lab Set ID:

1605584

Lab Sample ID Client Sample ID

Date Received:

5/27/2016 1035h

Contact: Garrin Palmer

Analysis

Matrix

Date Collected

	Lau Sample ID	Chefft Sample ID	Date Cone	cteu	Matrix	Allalysis
	1605584-020C	TW4-21_05232016	5/23/2016	1325h	Aqueous	VOA by GC/MS Method 8260C/5030C
3440 South 700 West	1605584-021A	TW4-01 05232016	5/23/2016	1500h	Aqueous	Anions, E300.0
alt Lake City, UT 84119	1605584-021B	TW4-01 05232016	5/23/2016	1500h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1605584-021C	TW4-01_05232016	5/23/2016	1500h	Aqueous	VOA by GC/MS Method 8260C/5030C
Dhana (201) 262 2626	1605584-022A	TW4-04_05232016	5/23/2016	1507h	Aqueous	Anions, E300.0
Phone: (801) 263-8686	1605584-022B	TW4-04_05232016	5/23/2016	1507h	Aqueous	Nitrite/Nitrate (as N), E353.2
Fax: (801) 263-8687	1605584-022C	TW4-04_05232016	5/23/2016	1507h	Aqueous	VOA by GC/MS Method 8260C/5030C
-mail: awal@awal-labs.com	1605584-023A	MW-04_05232016	5/23/2016	1453h	Aqueous	Anions, E300.0
	1605584-023B	MW-04_05232016	5/23/2016	1453h	Aqueous	Nitrite/Nitrate (as N), E353.2
veb: www.awal-labs.com	1605584-023C	MW-04_05232016	5/23/2016	1453h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1605584-024A	TW4-02_05232016	5/23/2016	1442h	Aqueous	Anions, E300.0
Kyle F. Gross	1605584-024B	TW4-02_05232016	5/23/2016	1442h	Aqueous	Nitrite/Nitrate (as N), E353.2
Laboratory Director	1605584-024C	TW4-02_05232016	5/23/2016	1442h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1605584-025A	MW-26_05232016	5/23/2016	1426h	Aqueous	Anions, E300.0
Jose Rocha	1605584-025B	MW-26_05232016	5/23/2016	1426h	Aqueous	Nitrite/Nitrate (as N), E353.2
QA Officer	1605584-025C	MW-26_05232016	5/23/2016	1426h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1605584-026A	TW4-11_05232016	5/23/2016	1434h	Aqueous	Anions, E300.0
	1605584-026B	TW4-11_05232016	5/23/2016	1434h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1605584-026C	TW4-11_05232016	5/23/2016	1434h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1605584-027A	TW4-22_05232016	5/23/2016	1400h	Aqueous	Anions, E300.0
	1605584-027B	TW4-22_05232016	5/23/2016	1400h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1605584-027C	TW4-22_05232016	5/23/2016	1400h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1605584-028A	TW4-19_05232016	5/23/2016	1540h	Aqueous	Anions, E300.0
	1605584-028B	TW4-19_05232016	5/23/2016	1540h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1605584-028C	TW4-19_05232016	5/23/2016	1540h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1605584-029A	TW4-37_05232016	5/23/2016	1410h	Aqueous	Anions, E300.0
	1605584-029B	TW4-37_05232016	5/23/2016	1410h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1605584-029C	TW4-37_05232016	5/23/2016	1410h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1605584-030A	TW4-20_05232016	5/23/2016	1420h	Aqueous	Anions, E300.0
	1605584-030B	TW4-20_05232016	5/23/2016	1420h	Aqueous	Nitrite/Nitrate (as N), E353.2

Energy Fuels Resources, Inc.

Project:

2nd Quarter Chloroform 2016

Lab Set ID:

1605584

Date Received:

1605584-031C

1605584-032A

5/27/2016 1035h

TW4-65 05252016

Trip Blank

Lab Sample ID	Client Sample ID	Date Colle	cted	Matrix	Analysis
1605584-030C	TW4-20_05232016	5/23/2016	1420h	Aqueous	VOA by GC/MS Method 8260C/5030C
1605584-031A	TW4-65_05252016	5/25/2016	740h	Aqueous	Anions, E300.0
1605584-031B	TW4-65 05252016	5/25/2016	740h	Aqueous	Nitrite/Nitrate (as N), E353.2

5/25/2016 740h

5/23/2016

Contact: Garrin Palmer

Aqueous

Aqueous

VOA by GC/MS Method

VOA by GC/MS Method

8260C/5030C

8260C/5030C

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686

Toll Free: (888) 263-8686

Fax: (801) 263-8687

>-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Inorganic Case Narrative

Client:

Energy Fuels Resources, Inc.

Contact:

Garrin Palmer

Project: Lab Set ID: 2nd Quarter Chloroform 2016

1605584

3440 South 700 West Salt Lake City, UT 84119 Sample Receipt Information:

Date of Receipt:

5/27/2016

Date(s) of Collection:

5/23 05/26/2016

Sample Condition: C-O-C Discrepancies: Intact None

Toll Free: (888) 263-8686

Phone: (801) 263-8686

Fax: (801) 263-8687

≥-mail: awal@awal-labs.com

web: www.awal-labs.com

Holding Time and Preservation Requirements: The analysis and preparation for the samples were performed within the method holding times. The samples were properly preserved.

Preparation and Analysis Requirements: The samples were analyted following the methods stated on the analytical reports.

Analytical QC Requirements: All instrument calibration and calibration check requirements were met. All internal standard recoveries met method criterion.

Kyle F. Gross Laboratory Director

Batch QC Requirements: MB, LCS, MS, MSD, RPD, DUP:

Jose Rocha OA Officer **Method Blanks (MB):** No target analytes were detected above reporting limits, indicating that the procedure was free from contamination.

Laboratory Control Samples (LCS): All LCS recoveries were within control limits, indicating that the preparation and analysis were in control.

Matrix Spike / Matrix Spike Duplicates (MS/MSD): All percent recoveries and RPDs (Relative Percent Differences) were inside established limits, indicating no apparent matrix interferences.

Duplicate (DUP): The parameters that required a duplicate analysis had RPDs within the control limits.

Corrective Action: None required.

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

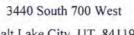
Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Energy Fuels Resources, Inc.

Lab Set ID: 1605584


Project: 2nd Quarter Chloroform 2016

Contact: Garrin Palmer

Dept: WC

QC Type: DUP

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: Test Code:	1605584-021BDUP NO2/NO3-W-353.2	Date Analy Led:	06/09/20	16 1245h										
Nitrate/Nitrite (a:	s N)	0.162	mg/L	E353.2	0.00833	0.0100					0.138	15.8	20	

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Energy Fuels Resources, Inc.

Lab Set ID: 1605584


Project: 2nd Quarter Chloroform 2016

Contact: Garrin Palmer

Dept: WC

QC Type: LCS

	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
LCS-R90701 300.0-W	Date Analy ed:	06/01/20	16 1152h										
	5.20	mg/L	E300,0	0.00516	0.100	5.000	0	104	90 - 110				
LCS-R90702 300.0-W	Date Analy [ed:	06/01/20	16 2159h										
	5.20	mg/L	E300,0	0.00516	0.100	5,000	0	104	90 - 110				
LCS-R90924 300.0-W	Date Analy Led:	06/09/20	16 1114h										
	5.19	mg/L	E300.0	0.00516	0.100	5.000	0	104	90 - 110				
LCS-R90861 NO2/NO3-W-353.2	Date Analy ☐ed:	06/08/20	16 1352h										
N)	1.00	mg/L	E353,2	0.00833	0.0100	1.000	0	100	90 - 110				
LCS-R90863 NO2/NO3-W-353,2	Date Analy ☐ed:	06/08/20	16 1439h										
N)	0.993	mg/L	E353.2	0.00833	0.0100	1.000	0	99.3	90 - 110				
LCS-R90898 NO2/NO3-W-353.2	Date Analy ed:	06/09/20	16 1241h										
N)	0.929	mg/L	E353,2	0.00833	0.0100	1.000	0	92.9	90 - 110				
	LCS-R90702 300.0-W LCS-R90924 300.0-W LCS-R90861 NO2/NO3-W-353.2 N) LCS-R90863 NO2/NO3-W-353.2 N) LCS-R90898	LCS-R90701 300.0-W 5.20 LCS-R90702 300.0-W 5.20 LCS-R90924 300.0-W 5.19 LCS-R90861 NO2/NO3-W-353.2 N) 1.00 LCS-R90863 NO2/NO3-W-353.2 N) Date Analy ⊡ed:	Date AnalyTed: 06/01/20 300.0-W 5.20 mg/L	LCS-R90701 Date AnalyTed: 06/01/2016 1152h 300.0-W 5.20 mg/L E300.0 LCS-R90702 Date AnalyTed: 06/01/2016 2159h 300.0-W 5.20 mg/L E300.0 LCS-R90924 Date AnalyTed: 06/09/2016 1114h 300.0-W 5.19 mg/L E300.0 LCS-R90861 Date AnalyTed: 06/08/2016 1352h NO2/NO3-W-353.2 Date AnalyTed: 06/08/2016 1439h LCS-R90863 Date AnalyTed: 06/08/2016 1439h NO2/NO3-W-353.2 Date AnalyTed: 06/09/2016 1241h LCS-R90898 Date AnalyTed: 06/09/2016 1241h	LCS-R90701 300.0-W Date Analyted: 06/01/2016 1152h LCS-R90702 300.0-W Date Analyted: 06/01/2016 2159h LCS-R90924 300.0-W Date Analyted: 06/09/2016 1114h LCS-R90861 NO2/NO3-W-353.2 Date Analyted: 06/08/2016 1352h LCS-R90863 NO2/NO3-W-353.2 Date Analyted: 06/08/2016 1439h N) 0.993 mg/L E353.2 0.00833 LCS-R90898 NO2/NO3-W-353.2 Date Analyted: 06/09/2016 1241h E353.2 0.00833	Date Analyted: 06/01/2016 1152h	Date Analyted: O6/01/2016 1152h Spiked	CS-R90701 Date Analyted: 06/01/2016 1152h	Date Analyted: O6/01/2016 1152h	CS-R90701 Date Analyted 06/01/2016 1152h Spleed Amount MDL Limit Spleed Amount MREC Limits LCS-R90701 300.0-W S.200 mg/L E300.0 0.00516 0.100 S.000 0 104 90-110 MG/L MG/L	LCS-R99701 Date AnalyTed: Date Ana	CS-R90701 Date Analytical Date Analytical	CS-R90701 Date Analytical Date Analytical

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Energy Fuels Resources, Inc.

Lab Set ID: 1605584

Client:

Project: 2nd Quarter Chloroform 2016

Contact: Garrin Palmer

Dept: WC

QC Type: MBLK

	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
MB-R90701 300.0-W	Date Analy led:	06/01/20	16 1135h										
	□ 0.100	mg/L	E300.0	0.00516	0.100								
MB-R90702 300.0-W	Date Analy Led;	06/01/20	16 2142h										
	□0.100	mg/L	E300.0	0.00516	0.100								
MB-R90924 300.0-W	Date Analy [ed:	06/09/20	16 1057h										
	□0.100	mg/L	E300.0	0.00516	0.100								
MB-R90861 NO2/NO3-W-353.2	Date Analy Led:	06/08/20	16 1351h										
N)	□ 0.0100	mg/L	E353.2	0.00833	0.0100								
MB-R90863 NO2/NO3-W-353.2	Date Analy [ed:	06/08/20	16 1438h										
N)	□ 0.0100	mg/L	E353.2	0.00833	0.0100								
MB-R90898 NO2/NO3-W-353.2	Date Analy Ted:	06/09/20	16 1240h										
N)	□ 0.0100	mg/L	E353.2	0.00833	0.0100								
	300.0-W MB-R90702 300.0-W MB-R90924 300.0-W MB-R90861 NO2/NO3-W-353.2 N) MB-R90863 NO2/NO3-W-353.2 N) MB-R90898 NO2/NO3-W-353.2	MB-R90701 300.0-W □0.100 MB-R90702 300.0-W □0.100 MB-R90924 300.0-W □0.100 MB-R90861 NO2/NO3-W-353.2 N) □0.0100 MB-R90863 NO2/NO3-W-353.2 N) □0.0100 MB-R90863 NO2/NO3-W-353.2 N) □0.0100 MB-R90863 NO2/NO3-W-353.2 N) □0.0100 Date Analy ed: NO2/NO3-W-353.2 N) □0.0100 Date Analy ed: NO2/NO3-W-353.2	MB-R90701 Date Analy [ed: 06/01/20] 300.0-W □ 0.100 mg/L MB-R90702 Date Analy [ed: 06/01/20] 06/01/20] 300.0-W □ 0.100 mg/L MB-R90924 Date Analy [ed: 06/09/20] 300.0-W □ 0.100 mg/L MB-R90861 Date Analy [ed: 06/08/20] NO2/NO3-W-353.2 Date Analy [ed: 06/08/20] NO2/NO3-W-353.2 Date Analy [ed: 06/09/20] MB-R90898 Date Analy [ed: 06/09/20] NO2/NO3-W-353.2 Date Analy [ed: 06/09/20]	MB-R90701 Date Analy [ed: 06/01/2016 1135h 300.0-W □ 0.100 mg/L E300.0 MB-R90702 Date Analy [ed: 06/01/2016 2142h 300.0-W □ 0.100 mg/L E300.0 MB-R90924 Date Analy [ed: 06/09/2016 1057h 300.0-W □ 0.100 mg/L E300.0 MB-R90861 Date Analy [ed: 06/08/2016 1351h NO2/NO3-W-353.2 Date Analy [ed: 06/08/2016 1438h NO2/NO3-W-353.2 Date Analy [ed: 06/08/2016 1438h MB-R90898 Date Analy [ed: 06/09/2016 1240h NO2/NO3-W-353.2 Date Analy [ed: 06/09/2016 1240h	MB-R90701 300.0-W Date Analyted: 06/01/2016 1135h MB-R90702 300.0-W Date Analyted: 06/01/2016 2142h MB-R90924 300.0-W Date Analyted: 06/09/2016 1057h MB-R90861 NO2/NO3-W-353.2 Date Analyted: 06/08/2016 1351h MB-R90863 NO2/NO3-W-353.2 Date Analyted: 06/08/2016 1438h MB-R90898 NO2/NO3-W-353.2 Date Analyted: 06/08/2016 1240h MB-R90898 NO2/NO3-W-353.2 Date Analyted: 06/09/2016 1240h	MB-R90701 300.0-W Date Analy [ed: 06/01/2016 1135h MB-R90702 300.0-W Date Analy [ed: 06/01/2016 2142h MB-R90702 300.0-W Date Analy [ed: 06/01/2016 2142h MB-R90924 300.0-W Date Analy [ed: 06/09/2016 1057h MB-R90861 NO2/NO3-W-353.2 Date Analy [ed: 06/08/2016 1351h N) □ 0.0100 mg/L E353.2 0.00833 0.0100 MB-R90863 NO2/NO3-W-353.2 Date Analy [ed: 06/08/2016 1438h E353.2 0.00833 0.0100 MB-R90898 NO2/NO3-W-353.2 Date Analy [ed: 06/09/2016 1240h E353.2 0.00833 0.0100	MB-R90701 300.0-W Date Analyted: 06/01/2016 1135h Limit Spiked MB-R90701 300.0-W Date Analyted: 06/01/2016 1135h MB-R90702 300.0-W Date Analyted: 06/01/2016 2142h MB-R90924 300.0-W Date Analyted: 06/09/2016 1057h MB-R90861 NO2/NO3-W-353.2 Date Analyted: 06/08/2016 1351h N) □ 0.0100 mg/L E353.2 0.00833 0.0100 MB-R90863 NO2/NO3-W-353.2 Date Analyted: 06/08/2016 1438h N) □ 0.0100 mg/L E353.2 0.00833 0.0100 MB-R90898 NO2/NO3-W-353.2 Date Analyted: 06/09/2016 1240h	MB-R90701 300.0-W Date Analyted: 06/01/2016 1135h Limit Spiked Amount MB-R90701 300.0-W □ 0.100 mg/L E300.0 0.00516 0.100 □ 0.0100 □ 0.0100	MB-R90701 Date Analyted: O6/01/2016 1135h Spiked Amount MREC MB-R90701 O100 mg/L E300.0 0.00516 O.100 O.100	MB-R90701 Date AnalyTed: O6/01/2016 1135h Spiked Amount WREC Limits Spiked Amount WREC Limits Spiked Amount WREC Limits Spiked Amount WREC Limits Spiked MB-R90701 Spiked O6/01/2016 1135h Spiked O6/01/2016	MB-R90701 Date AnalyTed: O6/01/2016 1135h Spiked Amount VREC Limits Amt	MB-R90701 Olive Merical Merical Merical Mile Merical Mile Merical Mile Merical Merical Olive Olive Olive Merical Olive Olive	MB-R90701 300.0-W 2010 300.0-W 300.0-W 2010 300.0-W 2010

Report Date: 6/15/2016 Page 73 of 82

3440 South 700 West

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha **OA** Officer

QC SUMMARY REPORT

Energy Fuels Resources, Inc.

Lab Set ID: 1605584

2nd Quarter Chloroform 2016 Project:


Client:

Garrin Palmer Contact:

WC Dept:

QC Type: MS

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: Test Code:	1605584-018AMS 300.0-W	Date Analy[ed:	06/01/20	16 1226h										
Chloride		1,840	mg/L	E300.0	1.03	20.0	1,000	771	107	90 - 110				
Lab Sample ID: Test Code:	1605584-020AMS 300.0-W	Date Analy Ed:	06/01/20	16 1316h										
Chloride		1,460	mg/L	E300.0	1.03	20.0	1,000	425	104	90 - 110				
Lab Sample ID: Test Code:	1605584-027AMS 300.0-W	Date Analy[ed:	06/01/20	16 2232h										
Chloride		1,660	mg/L	E300,0	1.03	20.0	1,000	598	106	90 - 110				
Lab Sample ID: Test Code:	1605584-028AMS 300.0-W	Date Analy ed:	06/01/20	16 2323h										
Chloride		1,270	mg/L	E300.0	1.03	20.0	1,000	204	107	90 - 110				
Lab Sample ID: Test Code:	1605584-002AMS 300.0-W	Date Analy [ed:	06/09/20	16 1147h										
Chloride		133	mg/L	E300.0	0.103	2.00	100.0	27.9	105	90 - 110				
Lab Sample ID: Test Code:	1605584-001BMS NO2/NO3-W-353,2	Date Analy[ed;	06/08/20	16 1354h										
Nitrate/Nitrite (as	N)	10.0	mg/L	E353,2	0.0833	0.100	10.00	0	100	90 - 110				
Lab Sample ID: Test Code:	1605584-002BMS NO2/NO3-W-353.2	Date Analy[ed:	06/08/20	16 1357h										
Nitrate/Nitrite (as	N)	15.6	mg/L	E353,2	0.0833	0.100	10.00	5.65	99.0	90 - 110				
Lab Sample ID: Test Code:	1605584-022BMS NO2/NO3-W-353.2	Date Analy [ed:	06/08/20	16 1443h										
Nitrate/Nitrite (as	N)	16.3	mg/L	E353,2	0.0833	0.100	10.00	6.56	97.3	90 - 110				

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Energy Fuels Resources, Inc.

Lab Set ID: 1605584

Project: 2nd Quarter Chloroform 2016

Contact: Garrin Palmer

Dept: WC

QC Type: MS

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qua
Lab Sample ID: Test Code:	1605584-021BMS NO2/NO3-W-353.2	Date Analy led:	06/09/201	16 1243h										
Nitrate/Nitrite (a	s N)	9.49	mg/L	E353,2	0.0833	0.100	10.00	0.138	93.5	90 - 110				

3440 South 700 West

A

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

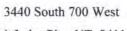
Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Energy Fuels Resources, Inc.

Lab Set ID: 1605584

Lab Set 1D: 1003364


Project: 2nd Quarter Chloroform 2016

Contact: Garrin Palmer

Dept: WC

QC Type: MSD

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: Test Code:	1605584-020AMSD 300.0-W	Date Analy [ed:	06/01/20	16 1333h										
Chloride		1,470	mg/L	E300.0	1.03	20.0	1,000	425	104	90 - 110	1460	0.304	20	
Lab Sample ID: Test Code:	1605584-018AMSD 300.0-W	Date Analy[ed:	06/02/20	16 106h										
Chloride		1,840	mg/L	E300.0	1.03	20.0	1,000	771	107	90 - 110	1840	0.0182	20	
Lab Sample ID: Test Code:	1605584-028AMSD 300.0-W	Date Analy led:	06/01/20	16 2340h										
Chloride		1,300	mg/L	E300,0	1.03	20.0	1,000	204	110	90 - 110	1270	2.50	20	
Lab Sample ID: Test Code:	1605584-027AMSD 300.0-W	Date Analy [ed;	06/02/20	/02/2016 720h										
Chloride		1,620	mg/L	E300.0	1.03	20.0	1,000	598	103	90 - 110	1660	1.96	20	
Lab Sample ID: Test Code:	1605584-002AMSD 300.0-W	Date Analy [ed:	06/09/20	16 1204h										
Chloride		133	mg/L	E300.0	0.103	2.00	100.0	27.9	105	90 - 110	133	0.198	20	
Lab Sample ID: Test Code:	1605584-001BMSD NO2/NO3-W-353.2	Date Analy Led:	06/08/20	16 1355h										
Nitrate/Nitrite (as	N)	9.92	mg/L	E353.2	0.0833	0.100	10.00	0	99.2	90 - 110	10	1.14	10	
Lab Sample ID: Test Code:	1605584-002BMSD NO2/NO3-W-353.2	Date Analy [ed:	06/08/20	16 1358h										
Nitrate/Nitrite (as	N)	15.4	mg/L	E353,2	0.0833	0.100	10.00	5.65	97.8	90 - 110	15.6	0.775	10	
Lab Sample ID: Test Code:	1605584-022BMSD NO2/NO3-W-353.2	Date Analy ded:	06/08/20	16 1444h										
Nitrate/Nitrite (as	N)	16.0	mg/L	E353.2	0.0833	0.100	10.00	6.56	94,7	90 - 110	16.3	1.61	10	

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Energy Fuels Resources, Inc.

Lab Set ID: 1605584

Client:

Project: 2nd Quarter Chloroform 2016

Contact: Garrin Palmer

Dept: WC

QC Type: MSD

Analyte	Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: 1605584-021BMSD Test Code: NO2/NO3-W-353.2	Date Analy [ed:	06/09/201	16 1244h										
Nitrate/Nitrite (as N)	9.53	mg/L	E353,2	0.0833	0.100	10.00	0.138	93.9	90 - 110	9.49	0.442	10	

Work Order: 1605584

Page 1 of 6

Client:

Energy Fuels Resources, Inc.

Due Date: 6/8/2016

Client ID: Project:

DEN100

Contact:

2nd Quarter Chloroform 2016

QC Level:

WO Type: Protect

Comments:

PA Rush. QC 3 (Summary/No chromatograms). RL of 1 ppm for Chloride and VOC and 0.1 ppm for NO2/NO3 - Run NO2/NO3 at a 10□ dilution. Expected

Garrin Palmer

levels provided by client - see Jenn. J-flag what we can timeet. EIM Locus and EDD-Denison. Email Group.□

Sample ID	Client Sample ID	Collected Date	Received Date	Test Code	Matrix	Sel	Storage	
1605584-001A	TW4-03R_05242016	5/24/2016 0704h	5/27/2016 1035h	300.0-W	Aqueous	~	df - wc	
				1 SEL Analytes: CL				
1605584-001B				NO2/NO3-W-353.2		~	df - no2/no3	
				1 SEL Analytes: NO3NC	D2N			
1605584-001C				8260-W-DEN100		~	VOCFridge	2
				Test Group: 8260-W-DE	EN100; # of Analytes: 4 / #	of Surr: 4		
1605584-002A	TW4-03_05252016	5/25/2016 0730h	5/27/2016 1035h	300.0-W	Aqueous	~	df-wc	Ì
				I SEL Analytes: CL				
1605584-002B				NO2/NO3-W-353.2		~	df - no2/no3	
	z			1 SEL Analytes: NO3NC	D2N			
1605584 - 002C				8260-W-DEN100		~	VOCFridge	1
				Test Group: 8260-W-DE	EN100; # of Analytes: 4 / #	of Surr: 4		
1605584-003A	TW4-12_05252016	5/25/2016 0740h	5/27/2016 1035h	300.0-W	Aqueous	~	df - wc	
				1 SEL Analytes: CL				
1605584-003B				NO2/NO3-W-353.2		✓	df - no2/no3	
				1 SEL Analytes: NO3NC	D2N			
1605584-003C				8260-W-DEN100		~	VOCFridge	3
				Test Group: 8260-W-DE	EN100; # of Analytes: 4 / #	of Surr: 4		
1605584-004A	TW4-28_05252016	5/25/2016 0748h	5/27/2016 1035h	300.0-W	Aqueous	~	df-wc	
				1 SEL Analytes: CL				
1605584-004B				NO2/NO3-W-353.2		~	df - no2/no3	
				1 SEL Analytes: NO3NC	D2N			
1605584-004C				8260-W-DEN100		✓	VOCFridge	1
				Test Group: 8260-W-DE	EN100; # of Analytes: 4 / #	of Surr: 4		
1605584-005A	TW4-32_05252016	5/25/2016 0753h	5/27/2016 1035h	300.0-W	Aqueous	~	df - wc	
				1 SEL Analytes: CL				
1605584-005B				NO2/NO3-W-353.2		~	df - no2/no3	
				1 SEL Analytes: NO3NC	D2N			
1605584-005C				8260-W-DEN100		~	VOCFridge	1
				Test Group: 8260-W-DE	EN100; # of Analytes: 4 / #	of Surr: 4		

HOK_ _ _ _

Work Order: 1605584

Page 2 of 6

Client: Energy Fuels Resources, Inc.

Due Date: 6/8/2016

Cilent:	Energy Fuels Resources, Inc.				Du	e Date: 6/8/2	2010	
Sample ID	Client Sample ID	Collected Date	Received Date	Test Code	Matrix	Sel	Storage	
1605584-006A	TW4-13_05252016	5/25/2016 0758h	5/27/2016 1035h	300.0-W 1 SEL Analytes: CL	Aqueous	•	df - wc	1
1605584-006B				NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2	N	Y	df - no2/no3	
1605584-006C				8260-W-DEN100 Test Group: 8260-W-DEN		of Surr: 4	VOCFridge	3
1605584-007A	TW4-36_05252016	5/25/2016 0805h	5/27/2016 1035h	300.0-W 1 SEL Analytes: CL	Aqueous	V	df - wc	I
1605584-007B		5		NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2	N	~	df - no2/no3	
1605584-007C				8260-W-DEN100 Test Group: 8260-W-DEN		of Surr: 4	VOCFridge	3
1605584-008A	TW4-31_05252016	5/25/2016 0813h	5/27/2016 1035h	300.0-W 1 SEL Analytes: CL	Aqueous	~	df - wc	1
1605584-008B				NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2	N	V	df - no2/no3	
1605584-008C	-			8260-W-DEN100 Test Group: 8260-W-DEN		of Surr: 4	VOCFridge	3
1605584-009A	TW4-34_05262016	5/26/2016 0736h	5/27/2016 1035h	300.0-W 1 SEL Analytes: CL	Aqueous	~	df - wc	1
1605584-009B				NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2.	N	V	df - no2/no3	
1605584-009C				8260-W-DEN100 Test Group: 8260-W-DEN	[100; # of Analytes: 4 / # o	of Surr: 4	VOCFridge	3
1605584-010A	TW4-35_05262016	5/26/2016 0743h	5/27/2016 1035h	300.0-W I SEL Analytes: CL	Aqueous	~	df-wc	1
1605584-010B				NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2	N	✓	df - no2/no3	
1605584-010C	Te Se			8260-W-DEN100 Test Group: 8260-W-DEN		of Surr: 4	VOCFridge	3
1605584-011A	TW4-23_05262016	5/26/2016 0751h	5/27/2016 1035h	300.0-W I SEL Analytes: CL	Aqueous	~	df - wc	1
1605584-011B				NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2	N	V	df - no2/no3	
1605584-011C				8260-W-DEN100 Test Group: 8260-W-DEN		of Surr: 4	VOCFridge	3
1605584-012A	TW4-25_05232016	5/23/2016 1335h	5/27/2016 1035h	300.0-W 1 SEL Analytes: CL	Aqueous	V	df - wc	ľ
Printed: 6/8/2016	FOR LABORATORY USE ONLY [fill out on page	ge 1]: %M	CN TAT	QC HOK	HOK H	IOK C	COC Emailed	

Work Order: 1605584

Page 3 of 6

Client: Energy Fuels Resources, Inc.

Due Date: 6/8/2016

	Energy Fuels Resources, Inc.				Bue	Date: 6/8/2	2010	
Sample ID	Client Sample ID	Collected Date	Received Date	Test Code	Matrix	Sel	Storage	
1605584-012B	TW4-25_05232016	5/23/2016 1335h	5/27/2016 1035h	NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N	Aqueous	V	df - no2/no3	1
1605584-012C				8260-W-DEN100		✓	VOCFridge	3
				Test Group: 8260-W-DEN10	00; # of Analytes: 4 / # of	Surr: 4		
1605584-013A	TW4-26_05262016	5/26/2016 0757h	5/27/2016 1035h	300.0-W 1 SEL Analytes: CL	Aqueous	~	df - wc	1
1605584-013B	-			NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N		✓	df - no2/no3	
1605584-013C	,			8260-W-DEN100		~	VOCFridge	3
				Test Group: 8260-W-DEN10	00; # of Analytes: 4 / # of	Surr: 4		
1605584-014A	TW4-27_05262016	5/26/2016 0804h	5/27/2016 1035h	300.0-W 1 SEL Analytes: CL	Aqueous	~	df - wc	1
1605584-014B				NO2/NO3-W-353.2		V	df - no2/no3	
				1 SEL Analytes: NO3NO2N				
1605584-014C				8260-W-DEN100		✓	VOCFridge	3
				Test Group: 8260-W-DEN10	00; # of Analytes: 4 / # of	Surr: 4		
1605584-015A	TW4-14_05262016	5/26/2016 0810h	5/27/2016 1035h	300.0-W	Aqueous	~	df - wc	1
				1 SEL Analytes: CL		i mento.		
1605584-015B				NO2/NO3-W-353.2		~	df - no2/no3	
1605504 0150	100			1 SEL Analytes: NO3NO2N			MOOL '1	
1605584-015C				8260-W-DEN100 Test Group: 8260-W-DEN10	00: # of Anglyton: 4 / # of	Samuel 1	VOCFridge	3
1605504 0164	TWV4 20 072 (201 (5/26/2016 00161	5/27/2016 1025I				10	
1605584-016A	TW4-30_05262016	5/26/2016 0816h	5/27/2016 1035h	300.0-W I SEL Analytes: CL	Aqueous	~	df - wc	-1
1605584-016B				NO2/NO3-W-353,2		~	df - no2/no3	
				1 SEL Analytes: NO3NO2N		18.0		
1605584-016C				8260-W-DEN100		~	VOCFridge	3
				Test Group: 8260-W-DENIG	00; # of Analytes: 4 / # of	Surr: 4		
1605584-017A	TW4-05_05262016	5/26/2016 0824h	5/27/2016 1035h	300.0-W 1 SEL Analytes: CL	Aqueous	✓	df - wc	1
1605584-017B				NO2/NO3-W-353.2		~	df - no2/no3	
				1 SEL Analytes: NO3NO2N				
1605584-017C				8260-W-DEN100		✓	VOCFridge	3
				Test Group: 8260-W-DEN10	00; # of Analytes: 4 / # of	Surr: 4		
1605584-018A	TW4-24_05232016	5/23/2016 1351h	5/27/2016 1035h	300.0-W	Aqueous	~	df - wc	1
	·			1 SEL Analytes: CL				
1605584-018B				NO2/NO3-W-353.2		~	df - no2/no3	
				1 SEL Analytes: NO3NO2N				

WORK ORDER Summary Work Order: 1605584 Page 4 of 6 Due Date: 6/8/2016 Client: Energy Fuels Resources, Inc. Sample ID Client Sample ID Collected Date Received Date Test Code Matrix Sel Storage **VOCFridge** TW4-24 05232016 5/23/2016 1351h 5/27/2016 1035h 8260-W-DEN100 1605584-018C Aqueous Test Group: 8260-W-DEN100; # of Analytes: 4 / # of Surr: 4 df - wc 1605584-019A TW4-16 05262016 5/26/2016 0830h 5/27/2016 1035h 300.0-W Aqueous 1 SEL Analytes: CL 1605584-019B NO2/NO3-W-353,2 df - no2/no3 1 SEL Analytes: NO3NO2N **VOCFridge** 1605584-019C 8260-W-DEN100 Test Group: 8260-W-DEN100; # of Analytes: 4 / # of Surr: 4 300.0-W df-wc 1605584-020A TW4-21 05232016 5/23/2016 1325h 5/27/2016 1035h Aqueous

1 SEL Analytes: CL NO2/NO3-W-353.2 df-no2/no3 1605584-020B 1 SEL Analytes: NO3NO2N 8260-W-DEN100 VOCFridge 1605584-020C Test Group: 8260-W-DEN100; # of Analytes: 4 / # of Surr: 4 TW4-01 05232016 5/23/2016 1500h 5/27/2016 1035h 300.0-W df-wc 1605584-021A Aqueous 1 SEL Analytes: CL 1605584-021B NO2/NO3-W-353.2 df-no2/no3 1 SEL Analytes: NO3NO2N 1605584-021C 8260-W-DEN100 **VOCFridge** Test Group: 8260-W-DEN100; # of Analytes: 4 / # of Surr: 4 1605584-022A TW4-04 05232016 5/23/2016 1507h 5/27/2016 1035h 300.0-W df-wc Aqueous I SEL Analytes: CL 1605584-022B NO2/NO3-W-353.2 df-no2/no3 1 SEL Analytes: NO3NO2N VOCFridge 1605584-022C 8260-W-DEN100 Test Group: 8260-W-DEN100; # of Analytes: 4 / # of Surr: 4 300.0-W 1605584-023A MW-04 05232016 5/23/2016 1453h 5/27/2016 1035h Aqueous df - wc 1 SEL Analytes: CL 1605584-023B NO2/NO3-W-353.2 df - no2/no3 1 SEL Analytes: NO3NO2N 1605584-023C **VOCFridge** 8260-W-DEN100 Test Group: 8260-W-DEN100; # of Analytes: 4 / # of Surr: 4 1605584-024A TW4-02_05232016 5/23/2016 1442h 5/27/2016 1035h 300.0-W Aqueous df-wc 1 SEL Analytes: CL NO2/NO3-W-353.2 1605584-024B df-no2/no3 1 SEL Analytes: NO3NO2N 1605584-024C 8260-W-DEN100 **VOCFridge** Test Group: 8260-W-DEN100; # of Analytes: 4 / # of Surr: 4 RT CN QC 🗆

WORK ORDER Summary Work Order: 1605584 Page 5 of 6 Energy Fuels Resources, Inc. Due Date: 6/8/2016 Client: Sample ID Client Sample ID **Collected Date Received Date Test Code** Matrix Sel Storage df - wc 300.0-W 1605584-025A MW-26 05232016 5/23/2016 1426h 5/27/2016 1035h Aqueous 1 SEL Analytes: CL NO2/NO3-W-353.2 df - no2/no3 1605584-025B 1 SEL Analytes: NO3NO2N 8260-W-DEN100 **VOCFridge** 1605584-025C Test Group: 8260-W-DEN100; # of Analytes: 4 / # of Surr: 4 1605584-026A TW4-11 05232016 5/23/2016 1434h 5/27/2016 1035h 300.0-W df - wc Aqueous 1 SEL Analytes: CL df - no2/no3 NO2/NO3-W-353.2 1605584-026B 1 SEL Analytes: NO3NO2N **VOCFridge** 1605584-026C 8260-W-DEN100 Test Group: 8260-W-DEN100; # of Analytes: 4 / # of Surr: 4 TW4-22 05232016 5/23/2016 1400h 5/27/2016 1035h 300.0-W df - wc 1605584-027A Aqueous 1 SEL Analytes: CL NO2/NO3-W-353.2 df - no2/no3 1605584-027B 1 SEL Analytes: NO3NO2N 8260-W-DEN100 **VOCFridge** 1605584-027C Test Group: 8260-W-DEN100; # of Analytes: 4 / # of Surr: 4 df-wc 5/27/2016 1035h 300.0-W 1605584-028A TW4-19 05232016 5/23/2016 1540h Aqueous 1 SEL Analytes: CL df - no2/no3 1605584-028B NO2/NO3-W-353.2 1 SEL Analytes: NO3NO2N VOCFridge 8260-W-DEN100 1605584-028C Test Group: 8260-W-DEN100; # of Analytes: 4 / # of Surr: 4 1605584-029A TW4-37 05232016 300.0-W df - wc 5/23/2016 1410h 5/27/2016 1035h Aqueous 1 SEL Analytes: CL 1605584-029B NO2/NO3-W-353.2 df - no2/no3 1 SEL Analytes: NO3NO2N VOCFridge 1605584-029C 8260-W-DEN100 Test Group: 8260-W-DEN100; # of Analytes: 4 / # of Surr: 4 300.0-W 1605584-030A TW4-20 05232016 5/23/2016 1420h 5/27/2016 1035h df-wc Aqueous 1 SEL Analytes: CL df - no2/no3 1605584-030B NO2/NO3-W-353.2

5/27/2016 1035h

TAT [

CN _

5/25/2016 0740h

%M □ RT □

1605584-030C

1605584-031A

Printed: 6/8/2016

TW4-65_05252016

FOR LABORATORY USE ONLY [fill out on page 1]:

1 SEL Analytes: NO3NO2N

HOK_ _ _ _

Test Group: 8260-W-DEN100; # of Analytes: 4 / # of Surr: 4

Aqueous

HOK_ _ _ _

8260-W-DEN100

1 SEL Analytes: CL

300.0-W

QC 🗌

VOCFridge

df - wc

COC Emailed_

HOK_ _ _ _

WORK ORDER Summary Work Order: 1605584 Page 6 of 6 Client: Energy Fuels Resources, Inc. Due Date: 6/8/2016 Sample ID Client Sample ID **Collected Date Received Date Test Code** Matrix Sel Storage df - no2/no3 1605584-031B TW4-65_05252016 5/25/2016 0740h 5/27/2016 1035h NO2/NO3-W-353.2 Aqueous 1 SEL Analytes: NO3NO2N 1605584-031C 8260-W-DEN100 VOCFridge Test Group: 8260-W-DEN100; # of Analytes: 4 / # of Surr: 4 1605584-032A Trip Blank 5/23/2016 5/27/2016 1035h 8260-W-DEN100 VOCFridge Aqueous Test Group: 8260-W-DEN100; # of Analytes: 4 / # of Surr: 4

CN 🗌

QC

American West Analytical Laboratories 463 W. 3600 S. Selt Leke City, UT 84115

CHAIN OF CUSTODY

All analysis will be conducted using NELAP accredited methods and all data will be reported using AWAL's standard analyte lists and reporting limits (POL) unless specifically requested otherwise on this Chain of Custody and/or attached documentation.

-	Phone # (801) 263-8686 To Fax # (801) 263-8687 Er www.awal-la	mail awal@awal-labs.com					Level	:			т	urn Ard Star	ound Ti	ime:		Unless other arrangements have been made, signed reports will be emailed by 5:00 pm on the day they are due.	Due Date:
Client:	Energy Fuels Resources, Inc.										Τ	T				X Include EDD:	Laboratory Use Only
Address:	6425 S. Hwy. 191				П						1		1 3			LOCUS UPLOAD EXCEL	Samples Were: UP5
3 346,000	Blanding, UT 84511				П									1		Field Filtered For:	Shipped or hand delivered
Contact:	Garrin Palmer				П					1							2 Ambient of Chilled
Phone #:	(435) 678-2221	Cell #:			П									11/0/	1	For Compliance With: NELAP	3 Temperature 2 % "C
	gpalmer@energyfuels.com; KWeinel@ene dturk@energyfuels.com	rgyfuels.com;			П							1				□ RCRA □ CWA	4 Received Broken/Leaking
Project Name:	2nd Quarter Chloroform 2016				П											☐ SDWA ☐ ELAP/A2LA	(Improperty Sealed) Y
Project #:					П	(2)	300.0)				L		1			☐ NLLAP ☐ Non-Compliance	6 Demouts Descripted
PO#:				2		(353.2)	30	100								Other:	N Checked at bench Y
Sampler Name:	Tanner Holliday			ntaine	Matrix	NO3	(4500 or	(8260C)				1				Known Hazards	6 Received Within
	Sample ID:	Date Sampled	Time Sampled	# of Co	Sample	NO2/NO3	CI (4:	VOCS								& Sample Comments	Holding Times N
TW4-03R_052420	016	5/24/2016	704	5	w	х	х	X									
rw4-03_0525201	6	5/25/2016	730	5	w	x	x	х									COC Tape Was:
rw4-12_0525201	6	5/25/2016	740	5	w	x	x	X									Present on Outer Package N N NA
rw4-28_0525201	6	5/25/2016	748	5	w	х	х	х	(= 1)	1 54	T		0.0				2 Unbroken on Outer Package
rw4-32_0525201	6	5/25/2016	753	5	w	х	х	х									(V) N NA
rw4-13_0525201	6	5/25/2016	758	5	w	х	х	х		- 7							3 Present on Sample (NA)
rw4-36_0525201	6	5/25/2016	805	5	w	x	х	х									4 Unbroken on Sample
rw4-31_0525201	6	5/25/2016	813	5	w	х	х	х		- (h.)				17			Y N (NA)
rw4-34_0526201	.6	5/26/2016	736	5	w	х	х	x									Discrepancies Between Sample
rw4-35_0526201	6	5/26/2016	743	5	w	х	х	x									Labels and COC Record?
rw4-23_0526201	6	5/26/2016	751	5	w	х	x	x	- 1					1121-	13		
rw4-25_0523201	6	5/23/2016	1335	5	w	х	х	х			T						
rw4-26_0526201	6	5/26/2016	757	5	w	х	х	x									
Relinquished by:	uner Holleday		Received by: Signature								Da					Special Instructions:	
Print Name:	TANNER HOLLIDAY		Print Name:					,				ne:					
Relinquished by: Signature	Date: Received by Signature			0	1,	2.	d	1kg		1	Da	万人	7/16	é		See the Analytical Scope of Wanalyte list.	ork for Reporting Limits and VOC
Print Name:	Time:			1	m.	1	1/4	1/4	-	1	Tit	ne: /(35				
telinquished by: Signature	Date: Received by: Signature							/		,	Da	te:					
Print Name:		Time:	Print Name:						-		Ti	ne:					
Relinquished by: Signature		Dale:	Received by: Signature								Da	te:					
Print Name:		Time:	1000								Ti	ne:					
		Print Name:									_			_			

A

American West Analytical Laboratories

463 W. 3600 S. Salt Lake City, UT 84115 Phone # (801) 263-8686 Toll Free # (888) 263-8686 CHAIN OF CUSTODY

1605584

All analysis will be conducted using NELAP accredited methods and all data will be reported using AWAL's standard analyte lists and reporting limits (PQL) unless specifically requested otherwise on this Chain of Custody and/or attached documentation.

AWAL Lab Sample Set #

	And the same of th	Email awal@awal-labs.com		1	QC	Level				Around Time	:	Unless other arrangements have been made, signed reports will be emailed by 5:00 pm on the day they are due.	Due Date;
Client: Address: Contact: Phone #: Email: Project Name: Project #: PO #: Sampler Name:	Energy Fuels Resources, Inc. 6425 S. Hwy. 191 Blanding, UT 84511 Garrin Palmer (435) 678-2221 gpalmer@energyfuels.com; KWeinel@edutx@energyfuels.com 2nd Quarter Chloroform 2016	I-labs.com Cell #: nergyfuels.com;		ainers atrix	(353.2)	or 300.0)	(szeoc)			Around Time		x include EDD: LOCUS UPLOAD EXCEL Field Filtered For: For Compliance With: NELAP RCRA CWA SDWA ELAP / A2LA NLLAP Non-Compliance Other:	Laboratory Use Only Samples Ware: 1 Shipped on hand delivered 2 Ambient of Chilled 3 Temperature 2 8 10 4 Received Broken/Leaking (Improperly Sealed) Y Seponty Preserved N Checked at banch Y N
Gampler Name.	Sample ID:	Date Sampled	Time Sampled	# of Containe Sample Matrix	NO2/NO3	CI (4500	Vocs (8					Known Hazards & Sample Comments	6 Received Within Holding Times N
74-27_0526201	6	5/26/2016	804	5 W	х	X	x						
4-14_0526201	6	5/26/2016	810	5 W	x	х	х			100			COC Tape Was:
4-30_0526201	6	5/26/2016	816	5 W	х	х	x	30	1214	1 5 6 5	71.11.		1 Present on Outer Package Y N NA
4-05_0526201	6	5/26/2016	824	5 W	х	х	х	- 12					2 Unbroken on Outer Package
4-24_0523201	6	5/23/2016	1351	5 W	х	х	х			1000			N NA
4-16_0526201	6	5/26/2016	830	5 W	х	х	х			-			3 Present on Sample V N NA
4-21_0523201	6	5/23/2016	1325	5 W	х	х	х						4 Unbroken on Sample
4-01_0523201	6	5/23/2016	1500	5 W	х	х	х	E ho					Y N (NA)
4-04_0523201	6	5/23/2016	1507	5 W	х	х	x	100					Discrepancies Between Sample
7-04_05232016	i e	5/23/2016	1453	5 W	x	х	x						Labels and COC Record?
4-02_0523201	6	5/23/2016	1442	5 W	х	x	х	1 -1					
7-26_05232016		5/23/2016	1426	5 W	х	х	х						
4-11_0523201	6	5/23/2016	1434	5 W	х	х	х				3 - 1		
nquished by: ature	aver Holledow	Date: 5/26/2016 Time:	Received by: Signature						Date:			Special Instructions:	
Name: equished by: ature	TANNER HOLLIDAY	Date:	1230 Print Name: Received by: Signature			_ <	Hay	1	Date:	127/16		See the Analytical Scope of We analyte list.	ork for Reporting Limits and VO
Name:		Time:	Print Name:	26	na	H	avu	-	Time:	1035			
nquished by: ature		Date:	Received by: Signature				1		Date:				
Name: nquished by:		Time: Date:	Print Name: Received by:						Time: Date:				
ature		Time:	Signature	-	-	_			Time:				

A

American West Analytical Laboratories

463 W. 3600 S. Salt Lake City, UT 84115 Phone # (801) 263-8686 Toll Free # (888) 263-8686 CHAIN OF CUSTODY

1605584

All analysis will be conducted using NELAP accredited methods and all data will be reported using AWAL's standard analyte lists and reporting limits (PQL) unless specifically requested otherwise on this Chain of Custody and/or attached documentation.

AWAL Lab Sample Set #

-	Fax # (801) 263-8687 Email						Level	l:					round Tin	ne:	Unless other arrangements have been made, signed reports will be emailed by 5:00 pm on the day they are due.	Due Date:
Client:	Energy Fuels Resources, Inc.			Г											X Include EDD:	Laboratory Use Only
Address:	6425 S. Hwy. 191				П								1.1		LOCUS UPLOAD EXCEL	Samples Were: UP5
	Blanding, UT 84511				П				1	1 1				- 1 - 1	Field Filtered For:	1 Shipped or hand delivered
Contact:	Garrin Palmer				П				Ŧ.			M		1.1	STURE DE AVOIR	2 Ambient of Chilled
Phone #:	(435) 678-2221 Cel				П					1 1		W			For Compliance With: NELAP	3 Temperature 2 -8 -c
Email:	gpalmer@energyfuels.com; KWeinel@energ dturk@energyfuels.com	yfuels.com;			П				1		- 14			11	□ RCRA □ CWA	4 Received Broken/Leaking
Project Name:	2nd Quarter Chloroform 2016				Н	-0			1	1.1	Ш	51		11	□ SDWA □ ELAP/A2LA	(Improperly Sealed) Y N
Project #:					Ш	2)	(0.0	1		1.1	П		1 1	11	□ NLLAP □ Non-Compliance	5 Properly Preserved N
PO#:				93		(353.2)	300.0)	2		1.1				- 1 1	☐ Other:	Checked at bench
Sampler Name:	Tanner Holliday			ntainer	Matrix	103	00 or	(8260C)		1 1			1 1		Known Hazards	Y N 6 Received Within
Cw. I	Sample ID:	Date Sampled	Time Sampled	# of Car	Sample	NO2/NO3	C1 (4500	VOCS							& Sample Comments	Holding Times.
W4-22_0523201	6	5/23/2016	1400	5	W	x	х	X	2		-					
W4-19_0523201	6	5/23/2016	1540	5	w	X	х	х	2			lion				COC Tape Was:
W4-37_0523201	6	5/23/2016	1410	5	w	х	х	X	2							Present on Outer Package Y N NA
W4-20_0523201	6	5/23/2016	1420	5	w	х	х	X	2							2 Hobroken on Outer Package
W4-65_0525201		5/25/2016	740	5	w	х	х	X	2							O) N NA
RIP BLANK		5/23/2016		3	w	5.7		х	2							3 Present on Sample NA
EMP BLANK		5/26/2016		1	w			-	-			4	+			4 Unbroken on Sample (NA)
																Discrepancies Between Sample Labels and COC Record?
		115 - 11		F	F	4								= 1		
	./															
elinquished by:	sairux Hollism	And the second	Received by: Signature								7	Date:			Special Instructions:	
rint Name:	TANNER HOLLIDAY	Time: 1230	Print Name:						,			Time:				
elinquished by: Ignature	Date: Received by Signature			8	1	an-		4	4		1	Date:5	27/16		See the Analytical Scope of We analyte list.	ork for Reporting Limits and VOC
rini Name:	Time:			8		ha	+	1	1/2	at -	1	Time:	103			
elinquished by: ionature	Date: Received by: Signature							T)	/	-		Date:				
rint Name:		Time:	Print Name:									Time:				
elinquished by: ignature		Date:	Received by: Signature									Date:				
rint Name:		Time:	Print Name:				7					Time:				

Contaminant	Analytical Methods to be Used	Reporting Limit	Maximum Holding Times	Sample Preservation Requirements	Sample Temperature Requirements
General Inorganics				1	
Chloride	A4500-Cl B or A4500-Cl E	1 mg/L	28 days	None	≤6°C
	or E300.0	<u> </u>			
Sulfate	A4500- SO4 E or E300.0	1 mg/L	28 days	None	≤6°C
Carbonate as CO3	A2320 B	1 mg/L	14 days	None	≥6°C
Bicarbonate as HCO3	A2320 B	1 mg/L	14 days	None	-
Volatile Organic Compour				1.73,877	
Carbon Tetrachloride	SW8260B or SW8260C	1.0 μg/L	14 days	HCl to pH<2	≤6°C
Chloroform	SW8260B or SW8260C	1.0 μg/L	14 days	HCl to pH<2	≤6°C
Dichloromethane (Methylene Chloride)	SW8260B or SW8260C	1.0 μg/L	14 days	HCl to pH<2	≤6°C
Chloromethane	SW8260B or SW8260C	1.0 µg/L	14 days	HCl to pH<2	≤6°C
SVOCs - Tailings Impoun		Only			-
1,2,4-Trichlorobenzene	SW8270D	<10 ug/L	7/40 days	None	56℃
1,2-Dichlorobenzene	SW8270D	<10 ug/L	7/40 days	None	≤6°C
1,3-Dichlorobensene	SW8270D	<10 ug/L	7/40 days	None	≤6°C
1,4-Dichlorobenzene	SW8270D	<10 ug/L	7/40 days	None	≤6°C
1-Methylnaphthalene	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2,4,5-Trichlorophenol	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2,4,6-Trichlorophenol	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2,4-Dichlorophenol	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2,4-Dimethylphenol	SW8270D	<10 ug/L	1/40 days	None	≤6°C
2,4-Dinitrophenol	SW8270D	<20 ug/k	7/40 days	None	≤6°C
2,4-Dinitrotoluene	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2,6-Dinitrotoluene	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2-Chloronaphthalene	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2-Chlorophenol	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2-Methylnaphthalene	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2-Methylphenol	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2-Nitrophenol	SW8270D	<10 ug/L	7/40 days	None	≤6°C
3&4-Methylphenol	SW8270D	<10 ug/L	7/40 days	None	€6°C
3,3'-Dichlorobenzidine	SW8270D	<10 ug/L	7/40 days	None	≥60€
4.6-Dinitro-2-methylpheno	ol SW8270D	<10 ug/L	7/40 days	None	≤6°C

Preservation Check Sheet

Sample Set Extension and nH

				_			ampie	set Exte.		T PII			_		_	_		_	
Analysis	Preservative		12	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Ammonia	pH <2 H ₂ SO ₄																		
COD	pH <2 H ₂ SO ₄																		
Cyanide	pH >12 NaOH																		A STATE OF THE STA
Metals	pH <2 HNO ₃																		
NO ₂ & NO ₃	pH <2 H ₂ SO ₄	Yes	Ves	Ves	Ves	VeT	Yes	yes	Ves	Ves	Ves	Ves	Ver	Ves	Ves	Ves	Ves	1/es	Ves
O&G	pH <2 HCL	/	/	1	/	1	/	1	7	/	7	7		/	/			/	
Phenols	pH <2 H ₂ SO ₄																		
Sulfide	pH > 9NaOH, Zn Acetate																		
TKN	pH <2 H ₂ SO ₄																		
T PO ₄	pH <2 H ₂ SO ₄																		
- WART -																			
× .																			
											-			1	-				
																	1		

Procedure:

- 1) Pour a small amount of sample in the sample lid
- 2) 3) Pour sample from Lid gently over wide range pH paper
- Do Not dip the pH paper in the sample bottle or lid
- If sample is not preserved, properly list its extension and receiving pH in the appropriate column above
- 4) 5) Flag COC, notify client if requested
- 6) Place client conversation on COC
- 7) Samples may be adjusted

Frequency:

All samples requiring preservation

- The sample required additional preservative upon receipt.
- The sample was received unpreserved.
- The sample was received unpreserved and therefore preserved upon receipt.
- The sample pH was unadjustable to a pH \leq 2 due to the sample matrix.
- The sample pH was unadjustable to a pH > ____ due to the sample matrix interference.

Preservation Check Sheet

Sample Set Extension and pH

			P				ample	et Exte	nsion ar	upn									
Analysis	Preservative	19	20	21	22	23	24	25	26	27	28	29	30	31	-				
Ammonia	pH <2 H ₂ SO ₄																		
COD	pH <2 H ₂ SO ₄											Gran				L.,			
Cyanide	pH >12 NaOH	4																	
Metals	pH <2 HNO ₃																		
NO ₂ & NO ₃	pH <2 H ₂ SO ₄	Yes	Ves	VCS	Ves	Vei	Yes	yes	Ves	Ver	10	Ves	Ver	Ves	1/05	Ves	Ver	1/05	1/45
0 & G	pH <2 HCL	/	17	/	/	1	/	1	Υ	1	1	/		/	/		/	/	
Phenols	pH <2 H ₂ SO ₄																		
Sulfide	pH > 9NaOH,																		
	Zn Acetate																		
TKN	pH <2 H ₂ SO ₄														1				
T PO ₄	pH <2 H ₂ SO ₄																		
				41			-					-							
																		1-	\vdash

Procedure:

- 1) Pour a small amount of sample in the sample lid
- 2) Pour sample from Lid gently over wide range pH paper
- 3) Do Not dip the pH paper in the sample bottle or lid
- 4) If sample is not preserved, properly list its extension and receiving pH in the appropriate column above
- 5) Flag COC, notify client if requested
- 6) Place client conversation on COC
- 7) Samples may be adjusted

Frequency:

All samples requiring preservation

- * The sample required additional preservative upon receipt.
- + The sample was received unpreserved.
- ▲ The sample was received unpreserved and therefore preserved upon receipt.
- # The sample pH was unadjustable to a pH < 2 due to the sample matrix.
- The sample pH was unadjustable to a pH > ____ due to the sample matrix interference.

Garrin Palmer Energy Fuels Resources, Inc. 6425 S. Hwy 191 Blanding, UT 84511

TEL: (303) 389-4134

RE: 2nd Quarter Chloroform 2016

3440 South 700 West

Salt Lake City, UT 84119

Dear Garrin Palmer: Lab Set ID: 1606210

American West Analytical Laboratories received sample(s) on 6/10/2016 for the analyses presented in the following report.

Phone: (801) 263-8686 Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

American West Analytical Laboratories (AWAL) is accredited by The National Environmental Laboratory Accreditation Program (NELAP) in Utah and Texas; and is state accredited in Colorado, Idaho, New Mexico, Wyoming, and Missouri.

All analyses were performed in accordance to the NELAP protocols unless noted otherwise. Accreditation scope documents are available upon request. If you have any questions or concerns regarding this report please feel free to call.

Kyle F. Gross Laboratory Director

> Jose Rocha OA Officer

The abbreviation "Surr" found in organic reports indicates a surrogate compound that is intentionally added by the laboratory to determine sample injection, extraction, and/or purging efficiency. The "Reporting Limit" found on the report is equivalent to the practical quantitation limit (PQL). This is the minimum concentration that can be reported by the method referenced and the sample matrix. The reporting limit must not be confused with any regulatory limit. Analytical results are reported to three significant figures for quality control and calculation purposes.

Thank You,

Jose G Rocha Digitally signed by Jose G. Rocha
DN: cn=Jose G. Rocha,
o=American West Analytical
Laboratories, ou,
email=jose@awal-labs.com,
c=US
Date: 2016.08.21 10:52:52

Approved by:

Laboratory Director or designee

SAMPLE SUMMARY

Client: Project: Energy Fuels Resources, Inc. 2nd Quarter Chloroform 2016

Lab Set ID:

1606210

Date Received: 6/10/2016 1025h

Contact: Garrin Palmer

	Lab Sample ID	Client Sample ID	Date Coll	ected	Matrix	Analysis
3440 South 700 West	1606210-001A	TW4-18R_06072016	6/7/2016	703h	Aqueous	Anions, E300.0
Salt Lake City, UT 84119	1606210-001B	TW4-18R_06072016	6/7/2016	703h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1606210-001C	TW4-18R_06072016	6/7/2016	703h	Aqueous	VOA by GC/MS Method 8260C/5030C
Phone: (801) 263-8686	1606210-002A	MW-32_06082016	6/8/2016	1310h	Aqueous	Anions, E300.0
	1606210-002B	MW-32_06082016	6/8/2016	1310h	Aqueous	Nitrite/Nitrate (as N), E353.2
Toll Free: (888) 263-8686 Fax: (801) 263-8687	1606210-002C	MW-32_06082016	6/8/2016	1310h	Aqueous	VOA by GC/MS Method 8260C/5030C
e-mail: awal@awal-labs.com	1606210-003A	TW4-18_06082016	6/8/2016	901h	Aqueous	Anions, E300.0
	1606210-003B	TW4-18_06082016	6/8/2016	901h	Aqueous	Nitrite/Nitrate (as N), E353.2
web: www.awal-labs.com	1606210-003C	TW4-18_06082016	6/8/2016	901h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1606210-004A	TW4-09_06082016	6/8/2016	910h	Aqueous	Anions, E300.0
Kyle F. Gross	1606210-004B	TW4-09_06082016	6/8/2016	910h	Aqueous	Nitrite/Nitrate (as N), E353.2
Laboratory Director	1606210-004C	TW4-09_06082016	6/8/2016	910h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1606210-005A	TW4-33_06082016	6/8/2016	918h	Aqueous	Anions, E300.0
Jose Rocha	1606210-005B	TW4-33_06082016	6/8/2016	918h	Aqueous	Nitrite/Nitrate (as N), E353.2
QA Officer	1606210-005C	TW4-33_06082016	6/8/2016	918h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1606210-006A	TW4-29_06082016	6/8/2016	924h	Aqueous	Anions, E300.0
	1606210-006B	TW4-29_06082016	6/8/2016	924h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1606210-006C	TW4-29_06082016	6/8/2016	924h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1606210-007A	TW4-08_06082016	6/8/2016	932h	Aqueous	Anions, E300.0
	1606210-007B	TW4-08_06082016	6/8/2016	932h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1606210-007C	TW4-08_06082016	6/8/2016	932h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1606210-008A	TW4-06_06082016	6/8/2016	938h	Aqueous	Anions, E300.0
	1606210-008B	TW4-06_06082016	6/8/2016	938h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1606210-008C	TW4-06_06082016	6/8/2016	938h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1606210-009A	TW4-07_06082016	6/8/2016	946h	Aqueous	Anions, E300.0
	1606210-009B	TW4-07_06082016	6/8/2016	946h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1606210-009C	TW4-07_06082016	6/8/2016	946h	Aqueous	VOA by GC/MS Method 8260C/5030C
	1606210-010A	TW4-10_06082016	6/8/2016	953h	Aqueous	Anions, E300.0
	1606210-010B	TW4-10_06082016	6/8/2016	953h	Aqueous	Nitrite/Nitrate (as N), E353.2

Client:

Energy Fuels Resources, Inc.

Project:

2nd Quarter Chloroform 2016

Lab Set ID:

1606210

Date Received:

6/10/2016 1025h

Contact: Garrin Palmer

	Lab Sample ID	Client Sample ID	Date Colle	ected	Matrix	Analysis
2440 South 700 Wort	1606210-010C	TW4-10_06082016	6/8/2016	953h	Aqueous	VOA by GC/MS Method 8260C/5030C
3440 South 700 West	1606210-011A	TW4-60_06082016	6/8/2016	1400h	Aqueous	Anions, E300.0
3alt Lake City, UT 84119	1606210-011B	TW4-60_06082016	6/8/2016	1400h	Aqueous	Nitrite/Nitrate (as N), E353.2
	1606210-011C	TW4-60_06082016	6/8/2016	1400h	Aqueous	VOA by GC/MS Method 8260C/5030C
Phone: (801) 263-8686	1606210-012A	TW4-70_06082016	6/8/2016	1310h	Aqueous	Anions, E300.0
	1606210-012B	TW4-70_06082016	6/8/2016	1310h	Aqueous	Nitrite/Nitrate (as N), E353.2
Toll Free: (888) 263-8686 Fax: (801) 263-8687	1606210-012C	TW4-70_06082016	6/8/2016	1310h	Aqueous	VOA by GC/MS Method 8260C/5030C
e-mail: awal@awal-labs.com	1606210-013A	Trip Blank	6/7/2016		Aqueous	VOA by GC/MS Method 8260C/5030C

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Inorganic Case Narrative

Client:

Contact: Project:

Lab Set ID:

Energy Fuels Resources, Inc.

Garrin Palmer

2nd Quarter Chloroform 2016

1606210

3440 South 700 West Salt Lake City, UT 84119

Phone: (801) 263-8686 Toll Free: (888) 263-8686

Fax: (801) 263-8687

e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Sample Receipt Information:

Date of Receipt: Date(s) of Collection: Sample Condition: 6/10/2016 6/7 □ 6/8/2016

Sample Condition: Intact C-O-C Discrepancies: None

Holding Time and Preservation Requirements: The analysis and preparation for the samples were performed within the method holding times. The samples were properly preserved.

Preparation and Analysis Requirements: The samples were analyted following the methods stated on the analytical reports.

Analytical QC Requirements: All instrument calibration and calibration check requirements were met. All internal standard recoveries met method criterion.

Batch QC Requirements: MB, LCS, MS, MSD, RPD:

Method Blanks (MB): No target analytes were detected above reporting limits, indicating that the procedure was free from contamination.

Laboratory Control Samples (LCS): All LCS recoveries were within control limits, indicating that the preparation and analysis were in control.

Matrix Spike / Matrix Spike Duplicates (MS/MSD): All percent recoveries and RPDs (Relative Percent Differences) were inside established limits, indicating no apparent matrix interferences.

Corrective Action: None required.

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

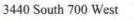
Jose Rocha QA Officer

QC SUMMARY REPORT

Client: Energy Fuels Resources, Inc.

Lab Set ID: 1606210

American West


Project: 2nd Quarter Chloroform 2016

Contact: Garrin Palmer

Dept: WC

QC Type: LCS

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: Test Code:	LCS-R91071 300.0-W	Date Analy Led:	06/14/20	6 1348h										
Chloride		5.26	mg/L	E300.0	0.00516	0.100	5.000	0	105	90 - 110				
Lab Sample ID: Test Code:	LCS-R91101 NO2/NO3-W-353.2	Date Analy [ed:	06/15/20	16 2210h										
Nitrate/Nitrite (as	N)	0.996	mg/L	E353,2	0.00833	0.0100	1.000	0	99.6	90 - 110				

Phone: (801) 263-8686, 7 e-mail: awal@awa

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Energy Fuels Resources, Inc.

Lab Set ID: 1606210

Project: 2nd Quarter Chloroform 2016

Client:

Contact: Garrin Palmer

Dept: WC

QC Type: MBLK

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: Test Code:	MB-R91071 300.0-W	Date Analy led:	06/15/20	16 028h										
Chloride		□ 0.100	mg/L	E300.0	0.00516	0.100								
Lab Sample ID: Test Code:	MB-R91101 NO2/NO3-W-353.2	Date Analy d:	06/15/20	16 2209h										
Nitrate/Nitrite (as	N)	□0.0100	mg/L	E353.2	0.00833	0.0100								

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686. Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

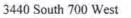
Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Energy Fuels Resources, Inc. Client:

Lab Set ID: 1606210


Project: 2nd Quarter Chloroform 2016

Garrin Palmer Contact:

WC Dept:

QC Type: MS

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: Test Code:	1606210-008AMS 300.0-W	Date Analy [ed:	06/14/20	16 1942h										
Chloride		150	mg/L	E300.0	0.103	2.00	100.0	44.1	106	90 - 110				
Lab Sample ID: Test Code:	1606210-009AMS 300.0-W	Date Analy[ed:	06/14/20	16 2032h										
Chloride		150	mg/L	E300.0	0.103	2.00	100.0	44.1	106	90 - 110				
Lab Sample ID: Test Code:	1606210-001BMS NO2/NO3-W-353.2	Date Analy Led:	06/15/20	16 2213h										
Nitrate/Nitrite (as	N)	9.98	mg/L	E353.2	0.0833	0.100	10.00	0	99.8	90 - 110				
Lab Sample ID: Test Code:	1606210-011BMS NO2/NO3-W-353.2	Date Analy [ed:	06/15/20	16 2230h										
Nitrate/Nitrite (as	N)	9.93	mg/L	E353,2	0.0833	0.100	10.00	0	99.3	90 - 110				

Salt Lake City, UT 84119

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Contact:

Dept: WC

Garrin Palmer

QC Type: MSD

Lab Set ID: 1606210

Project: 2nd Quarter Chloroform 2016

Client:

Energy Fuels Resources, Inc.

Analyte		Result	Units	Method	MDL	Reporting Limit	Amount Spiked	Spike Ref. Amount	%REC	Limits	RPD Ref. Amt	% RPD	RPD Limit	Qual
Lab Sample ID: Test Code:	1606210-008AMSD 300.0-W	Date Analy Ted:	06/14/20	16 1959h										
Chloride		149	mg/L	E300.0	0.103	2.00	100.0	44.1	105	90 - 110	150	0.796	20	
Lab Sample ID: Test Code:	1606210-009AMSD 300.0-W	Date Analy ed:	06/14/20	16 2049h										
Chloride		150	mg/L	E300.0	0.103	2.00	100.0	44.1	106	90 - 110	150	0.137	20	
Lab Sample ID: Test Code:	1606210-001BMSD NO2/NO3-W-353.2	Date Analy [ed:	06/15/20	16 2214h										
Nitrate/Nitrite (as	N)	9.67	mg/L	E353.2	0.0833	0.100	10.00	0	96.7	90 - 110	9.98	3.13	10	
Lab Sample ID: Test Code:	1606210-011BMSD NO2/NO3-W-353.2	Date Analy Led:	06/15/20	16 2231h										
Nitrate/Nitrite (as	N)	9.73	mg/L	E353.2	0.0833	0.100	10.00	0	97.3	90 - 110	9.93	1.95	10	

Page 1 of 3

Denison

WORK ORDER Summary

Energy Fuels Resources, Inc.

Work Order: 1606210 Due Date: 6/21/2016

Client ID:

Client:

Project:

DEN100

2nd Quarter Chloroform 2016

Contact:

Garrin Palmer

QC Level:

Ш

WO Type: Project

Comments:

PA Rush. QC 3 (Summary/No chromatograms). RL of 1 ppm for Chloride and VOC and 0.1 ppm for NO2/NO3 - Run NO2/NO3 at a 10X dilution. Expected

levels provided by client - see Jenn. J-flag what we can't meet. EIM Locus and EDD-Denison. Email Group.;

Sample ID	Client Sample ID	Collected Date	Received Date	Test Code	Matrix	Sel Storage	(7.8)
1606210-001A	TW4-18R_06072016	6/7/2016 0703h	6/10/2016 1025h	300.0-W	Aqueous	df-wc	1
				1 SEL Analytes: C.	L		
1606210-001B				NO2/NO3-W-353.2		df - no2/no3	
				I SEL Analytes: N	O3NO2N		
1606210-001C				8260-W-DEN100		VOCFridge	3
				Test Group: 8260-	W-DEN100; # of Analytes: 4 / # o	f Surr: 4	
1606210-002A	MW-32_06082016	6/8/2016 1310h	6/10/2016 1025h	300.0-W	Aqueous	df - wc	1
	<u></u>			1 SEL Analytes: C	L		
606210-002B				NO2/NO3-W-353.2		df - no2/no3	
				I SEL Analytes: N	O3NO2N		
1606210-002C				8260-W-DEN100		VOCFridge	3
				Test Group: 8260-	W-DEN100; # of Analytes: 4 / # o	of Surr: 4	
1606210-003A	TW4-18_06082016	6/8/2016 0901h	6/10/2016 1025h	300.0-W	Aqueous	df - wc	
				1 SEL Analytes: C	L		
1606210-003B				NO2/NO3-W-353.2		df - no2/no3	
8				1 SEL Analytes: N	O3NO2N		
1606210-003C				8260-W-DEN100		VOCFridge	:
				Test Group: 8260-	-W-DEN100; # of Analytes: 4 / # o	of Surr: 4	
1606210-004A	TW4-09_06082016	6/8/2016 0910h	6/10/2016 1025h	300.0-W	Aqueous	df - wc	
				1 SEL Analytes: C	^L L		
1606210-004B				NO2/NO3-W-353.2		df - no2/no3	
				1 SEL Analytes: N	IO3NO2N		
1606210-004C				8260-W-DEN100		VOCFridge	
				Test Group: 8260-	-W-DEN100; # of Analytes: 4 / # o	of Surr: 4	
1606210-005A	TW4-33_06082016	6/8/2016 0918h	6/10/2016 1025h	300.0-W	Aqueous	df-wc	
				1 SEL Analytes: C	EL		
1606210-005B				NO2/NO3-W-353.2		df - no2/no3	
				I SEL Analytes: λ	IO3NO2N		
1606210-005C				8260-W-DEN100		VOCFridge	
				Test Group: 8260	-W-DEN100; # of Analytes: 4 / #	of Surr: 4	

Work Order: 1606210

Page 2 of 3

Client:

Energy Fuels Resources, Inc.

Due Date: 6/21/2016

Client:	Energy Fuels Resources, Inc.					Due Date: 6/2.	1/2010	
Sample ID	Client Sample ID	Collected Date	Received Date	Test Code	Matrix	Sel	Storage	
1606210-006A	TW4-29_06082016	6/8/2016 0924h	6/10/2016 1025h	300.0-W	Aqueous		df-wc	į
				1 SEL Analytes: CL				
1606210-006B				NO2/NO3-W-353.2			df - no2/no3	
				1 SEL Analytes: NO3NO2	N			
1606210-006C				8260-W-DEN100	1100 # -54 14 4	/ H - 455 4	VOCFridge	3
	THE RESIDENCE OF THE PARTY OF T			Test Group: 8260-W-DEN		/ # of Surr: 4		
1606210-007A	TW4-08_06082016	6/8/2016 0932h	6/10/2016 1025h	300.0-W	Aqueous		df - wc	/3
	***************************************			1 SEL Analytes: CL			JE2/2	
1606210-007B				NO2/NO3-W-353.2	3.7		df - no2/no3	
1/0/010 0070				1 SEL Analytes: NO3NO2 8260-W-DEN100	N		VOCFridge	
1606210-007C				Test Group: 8260-W-DEN	1100: # of Analytae: A	/# of Sign: 1	VOCTINGE	-
			(#0.001.6.100.51			7 # 0J Sur1. 4	10	
1606210-008A	TW4-06_06082016	6/8/2016 0938h	6/10/2016 1025h	300.0-W	Aqueous		df - wc	
1.000010.0000	-			1 SEL Analytes: CL NO2/NO3-W-353.2			df - no2/no3	
1606210-008B					AT.		di - no2/no5	
1606310 0000				1 SEL Analytes: NO3NO2 8260-W-DEN100	IV		VOCFridge	
1606210-008C				Test Group: 8260-W-DEN	II00: # of Analytes: 4	1 / # of Surr: 4	Vocifiage	,
1606210-009A	TW4-07_06082016	6/8/2016 0946h	6/10/2016 1025h	300.0-W	Aqueous		df - wc	
				1 SEL Analytes: CL	•			
1606210-009B				NO2/NO3-W-353.2			df - no2/no3	
				1 SEL Analytes: NO3NO2	?N			
1606210-009C				8260-W-DEN100			VOCFridge	
	- 1570			Test Group: 8260-W-DEN	1100; # of Analytes: 4	1 / # of Surr: 4		
1606210-010A	TW4-10_06082016	6/8/2016 0953h	6/10/2016 1025h	300.0-W	Aqueous		df - wc	
				1 SEL Analytes: CL				
1606210-010B				NO2/NO3-W-353.2			df - no2/no3	
				1 SEL Analytes: NO3NO2	?N			
1606210-010C				8260-W-DEN100			VOCFridge	
				Test Group: 8260-W-DE	N100; # of Analytes: 4	1 / # of Surr: 4		
1606210-011A	TW4-60_06082016	6/8/2016 1400h	6/10/2016 1025h	300.0-W	Aqueous		df - wc	
				1 SEL Analytes: CL				
1606210-011B				NO2/NO3-W-353.2			df - no2/no3	
1606010 0116				1 SEL Analytes: NO3NO2	2N		NOOT ! I	
1606210-011C				8260-W-DEN100	V100: # of Analytan	1/# of Carry: 1	VOCFridge	
: 		5 to to o 5 d o 5	4114.104.4.4.5	Test Group: 8260-W-DE		r / # 0J SUTT: 4		
1606210-012A	TW4-70_06082016	6/8/2016 1310h	6/10/2016 1025h	300.0-W	Aqueous		df - wc	
				1 SEL Analytes: CL				
Printed: 6/10/2016	FOR LABORATORY USE ONLY [fill out on page 1]:	.%M □ RT □	CN TAT	QC ☐ HOK_	нок	HOK	COC Emailed	C- U
					- 0 = 1 1			

WORK ORDER Summary Work Order: 1606210 Page 3 of 3 Energy Fuels Resources, Inc. Due Date: 6/21/2016 Client: Collected Date Matrix Sel Storage Received Date Test Code Sample ID Client Sample ID df-no2/no3 1606210-012B TW4-70_06082016 6/8/2016 1310h 6/10/2016 1025h NO2/NO3-W-353.2 Aqueous 1 SEL Analytes: NO3NO2N VOCFridge 1606210-012C 8260-W-DEN100 Test Group: 8260-W-DEN100; # of Analytes: 4 / # of Surr: 4 VOCFridge Trip Blank 1606210-013A 6/7/2016 6/10/2016 1025h 8260-W-DEN100 Aqueous Test Group: 8260-W-DEN100; # of Analytes: 4 / # of Surr: 4

American West **Analytical Laboratories**

463 W. 3600 S. Salt Lake City, UT 84115 Phone # (801) 263-8686 Toll Free # (888) 263-8686 CHAIN OF CUSTODY

	16	06	2	10	ř.
_		Al Ish	7		#

All analysis will be conducted using NELAP accredited methods and all data will be reported using AWAL's standard analyte lists and reporting limits (POL) unless specifically requested otherwise on this Chain of Custody and/or attached documentation.

Page

	Fax # (801) 263-8687 Em. www.awal-lat						Level 3	l:		Tu	rn Around Ti Standard	me:	Unless other arrangements have been made, signed reports will be emailed by 5:00 pm on the day they are due.	Due Date:
Client:	Energy Fuels Resources, Inc.												X Include EDD:	Laboratory Use Only
Address:	6425 S. Hwy. 191				Н					1	1	1.1.	LOCUS UPLOAD EXCEL	Samples Were: UP5
	Blanding, UT 84511				П								Field Fiftered For:	Shipped or hand delivered
Contact:	Garrin Palmer			1	П									2 Ambient of Chilled
Phone #:	(435) 678-2221 C	ell #:			П	201				1			For Compliance With: NELAP	3 Temperature 1.50
Email:	gpalmer@energyfuels.com; KWeinel@ener dturk@energyfuels.com	gyfuels.com;			П								□ RCRA □ CWA	4 Received Broken/Leaking
Project Name:	OND OTTABLED ON OBORODM	016			П								□ SDWA □ ELAP/A2LA	(Improperty Sealed) Y
Project #:					П	2)	(0)	L					□ NLLAP □ Non-Compliance	5 Property Preserved
PO #:						(353.2)	or 300.0)	0					☐ Other:	Checked at bench
Sampler Name:	TANNER HOLLIDAY			tainer	Matrix		00 00	(8260C)					Known Hazards	Y N 6 Received Wilhin
	Sample ID:	Date Sampled	Time Sampled	# of Cont	Sample Matrix	NO2/NO3	CI (4500	vocs (& Sample Comments	Holding Times N
TW4-18R_060720		6/7/2016	703	5	w	x	х	x						~
MW-32_06082016		6/8/2016	1310	5	w	х	х	x	Union les					COC Tape Was:
TW4-18_0608201	6	6/8/2016	901	5	w	х	х	x						1 Bresent on Outer Package Y N NA
TW4-09_0608201	6	6/8/2016	910	5	w	х	x	x		T	17/			2 Uriproken on Outer Package
TW4-33_0608201	6	6/8/2016	918	5	w	х	х	x						N NA
TW4-29_0608201	6	6/8/2016	924	5	w	x	x	x		Į.				3 Present on Sample (NA)
TW4-08_0608201	6	6/8/2016	932	5	w	X	х	x						4 Unbroken on Sample
TW4-06_0608201	6	6/8/2016	938	5	w	X.	х	X						Y N (M)
TW4-07_0608201	6	6/8/2016	946	5	w	х	х	x		10		14/14/1		Discrepancies Between Sample
TW4-10_0608201	.6	6/8/2016	953	5	w	х	x	X						Labels and COC Record?
TW4-60_0608201	.6	6/8/2016	1400	5	w	х	х	x						
TW4-70_0608201	6	6/8/2016	1310	5	w	x	x	X						
TRIP BLANK		6/7/2016		3	w			X						
Relinquished by:	ver Hollish	Date: 6/9/2016	Received by: Signature							Dai	9.1		Special Instructions:	
Print Name:	TANNER HOLLIDAY	Time: 1250	Print Name:							Tim	0;			
Relinquished by: Signature		Date:	Received by: Signature	1	in		1/		1			6	See the Analytical Scope of W analyte list.	ork for Reporting Limits and VOC
Print Name:		Time:	Print Name:	2	-10	ha	4	ave		Tim	1625			
Relinquished by: Signature		Date:	Received by: Signature					/	1	Dal			Temp Blank I	nduded
Print Name:		Time:	Print Name:							Tim				
Relinquished by: Signature		Date:	Received by: Signature							Det				
Print Name:		Time:	Print Name:							Tlm	et.			

Contaminant	Analytical Methods to be Used	Reporting Limit	Maximum Holding Times	Sample Preservation Requirements	Sample Temperature Requirement
General Inorganics					
Chloride	A4500-Cl B or A4500-Cl E	1 mg/L	28 days	None	≤6°C
010-4-	or E300.0	× 1/1	20-4	Mana	< 6°C
Sulfate	A4500- SO4 E or E300.0	t mg/L	28 days	None	≤6°C
Carbonate as CO3	A2320 B	1 mg/L	14 days	None	36°C
Bicarbonate as HCO3	A2320 B	1 mg/L	14 days	None	
Volatile Organic Compound					
Carbon Tetrachloride	SW8260B or SW8260C	1.0 μg/L	14 days	HCl to pH<2	≤ 6°C
Chloroform	SW8260B or SW8260C	1.0 μg/L	14 days	HCl to pH<2	≤6°C
Dichloromethane (Methylene Chloride)	SW8260B or SW8260C	1.0 μg/L	14 days	HCl to pH<2	≤6°C
Chloromethane	SW8260B or SW8260C	1.0 μg/L	14 days	HCl to pH<2	≤6°C
SVOCs - Tailings Impound		Only			
1,2,4-Trichlorobenzene	SW8270D	<10 ug/L	7/40 days	None	56℃
1,2-Dichlorobenzene	SW8270D	<10 ug/L	7/40 days	None	≤6°C
1,3-Dichlorobenzene	SW8270D	<10 ug/L	7/40 days	None	≤6°C
1,4-Dichlorobenzene	SW8270D	<10 ug/L	7/40 days	None	≤6°C
1-Methylnaphthalene	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2,4,5-Trichlorophenol	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2,4,6-Trichlorophenol	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2,4-Dichlorophenol	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2,4-Dimethylphenol	SW8270D	<10.ug/L	7/40 days	None	≤6°C
2,4-Dinitrophenol	SW8270D	<20 ug/k	7/40 days	None	≤6°C
2,4-Dinitrotoluene	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2,6-Dinitrotoluene	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2-Chloronaphthalene	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2-Chlorophenol	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2-Methylnaphthalene	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2-Methylphenol	SW8270D	<10 ug/L	7/40 days	None	≤6°C
2-Nitrophenol	SW8270D	<10 ug/L	7/40 days	None	≤6°C
3&4-Methylphenol	SW8270D	<10 ug/L	7/40 days	None	€6°C
3,3'-Dichlorobenzidine	SW8270D	<10 ug/L	7/40 days	None	≤60€
46-Dinitro-2-methylphenol	SW8270D	<10 ug/L	7/40 days	None	≤6°C

Preservation Check Sheet

Sample Set Extension and nU

							Sample	Set Exter	ision an	d pH								
Analysis	Preservative	F	12	3	4	.5	C	7	8	9	10	11	12	v.				- 61
Ammonia	pH <2 H ₂ SO ₄							1										
COD	pH <2 H ₂ SO ₄																	
Cyanide	pH >12 NaOH																	
Metals	pH <2 HNO ₃																	
NO ₂ & NO ₃	pH <2 H ₂ SO ₄	Yes	Yes	Ves	Yes	1/2	Yes	Yes	1/05	Yes	YES	Yes	Yes					
O&G	pH <2 HCL	1	1	1	1-1	/	1	/	/	/	/	/	, ,					
Phenols	pH <2 H ₂ SO ₄																	
Sulfide	pH > 9NaOH, Zn Acetate																	
TKN	pH <2 H ₂ SO ₄																	
T PO ₄	pH <2 H ₂ SO ₄																	
											*							
		-	-				1					-			-	-		
			-			-							-					
		-	-			-	-	-				-	-		.4		-	
								4			1		1		1			 1

Procedure:

- 1) Pour a small amount of sample in the sample lid
- 2) Pour sample from Lid gently over wide range pH paper
- Do Not dip the pH paper in the sample bottle or lid
- If sample is not preserved, properly list its extension and receiving pH in the appropriate column above
- 3) 4) 5) Flag COC, notify client if requested
- Place client conversation on COC
- Samples may be adjusted

Frequency:

All samples requiring preservation

- The sample required additional preservative upon receipt.
- The sample was received unpreserved.
- The sample was received unpreserved and therefore preserved upon receipt.
- # The sample pH was unadjustable to a pH \leq 2 due to the sample matrix.
- The sample pH was unadjustable to a pH > ____ due to the sample matrix interference.

Tab H

Quality Assurance and Data Validation Tables

H-1 Field Data QA/QC Evaluation

Location	Casing Volume	2x Casing Volume	Volume Pumped	Volume Check	Condu	ectivity	RPD	P	Н	RPD	Те	mp	RPD	Redox I	otential	RPD	Tur	oidity	RPD
Piezometer 1	NA				21	16	NC	6.	81	NC	15	.11	NC	40	03	NC		.8	NC
Piezometer 2	NA				8	16	NC	6.	70	NC	14	.93	NC	4:	19	NC	2	.0	NC
Piezometer 3A	NA				12	258	NC	7.	10	NC	16	.25	NC	30	53	NC	2	1.0	NC
TWN-1	32.65	65.30	80.00	OK	853	854	0.12	6.86	6.80	0.88	15.08	15.07	0.07	422	422	0.00	3.0	3.1	3.28
TWN-2	42.18	Continuo	usly Pumpe	l Well	30	96	NC	6.	06	NC	14	.90	NC	40	56	NC	2	.8	NC
TWN-3	36.94	73.88	65.00	Pumped Dry	2124	2136	0.56	7.07	7.04	0.43	14.17	14.21	0.28	N	M	NC	N	M	NC
TWN-4	45.91	91.82	110.00	OK	1058	1057	0.09	6.61	6.63	0.30	14.73	14.72	0.07	391	390	0.26	0.0	0.0	0.00
TWN-7	13.11	26.22	20.00	Pumped Dry	1312	1306	0.46	7.38	7.36	0.27	15.19	15.11	0.53	N	M	NC	N	M	NC
TWN-18	55.28	110.56	130.00	OK	2278	2276	0.09	6.56	6.58	0.30	14.37	14.36	0.07	445	445	0.00	0.0	0.0	0.00
TW4-22	11.42	Continuo	usly pumpe	d well	53	884	NC	6.	29	NC	16	.21	NC	30	51	NC	0	.0	NC
TW4-24	19.65		usly pumpe		71	30	NC	6.	13	NC	15	.80	NC	38	33	NC	C	0.0	NC
TW4-25	46.13		usly pumpe		26	574	NC	6.	53	NC	15	.95	NC	40	03	NC	0	.7	NC

NC = Not Calculated

TWN-2, TW4-22, TW4-24, and TW4-25 are continuously pumping wells.

Piezometers 1, 2, and 3A were not pumped, only one set of parameters were taken.

TWN-3 and TWN-7 were pumped dry and sampled after recovery.

The QAP states that turbidity should be less than 5 Nephelometric Turbidity Units ("NTU") prior to sampling unless the well is characterized by water that has a higher turbidity. The QAP does not require that turbidity measurements be less than 5 NTU prior to sampling. As such, the noted observations regarding turbidity measurements less than 5 NTU below are included for information purposes only.

NM = Not Measured. The QAP does not require the measurement of redox potential or turbidity in wells that were purged to dryness.

H-2: Holding Time Evaluation

Location ID	Parameter Name	Sample Date	Analysis Date	Hold Time (Days)	Allowed Hold Time (Days)	Hold Time
PIEZ-01	Chloride	05/17/2016	05/25/2016	8	28	OK
PIEZ-01	Nitrate/Nitrite (as N)	05/17/2016	05/31/2016	14	28	OK
PIEZ-02	Chloride	05/17/2016	05/25/2016	8	28	OK
PIEZ-02	Nitrate/Nitrite (as N)	05/17/2016	05/31/2016	14	28	OK
PIEZ-03A	Chloride	05/17/2016	05/26/2016	9	28	OK
PIEZ-03A	Nitrate/Nitrite (as N)	05/17/2016	05/31/2016	14	28	OK
TWN-01	Chloride	05/17/2016	05/25/2016	8	28	OK
TWN-01	Nitrate/Nitrite (as N)	05/17/2016	05/31/2016	14	28	OK
TWN-02	Chloride	05/17/2016	05/25/2016	8	28	OK
TWN-02	Nitrate/Nitrite (as N)	05/17/2016	05/31/2016	14	28	OK
TWN-03	Chloride	05/18/2016	05/25/2016	7	28	OK
TWN-03	Nitrate/Nitrite (as N)	05/18/2016	05/31/2016	13	28	OK
TWN-04	Chloride	05/17/2016	05/25/2016	8	28	OK
TWN-04	Nitrate/Nitrite (as N)	05/17/2016	05/31/2016	14	28	OK
TWN-07	Chloride	05/18/2016	05/26/2016	8	28	OK
TWN-07	Nitrate/Nitrite (as N)	05/18/2016	05/31/2016	13	28	OK
TWN-07R	Chloride	05/17/2016	05/26/2016	9	28	OK
TWN-07R	Nitrate/Nitrite (as N)	05/17/2016	05/31/2016	14	28	OK
TWN-18	Chloride	05/17/2016	05/25/2016	8	28	OK
TWN-18	Nitrate/Nitrite (as N)	05/17/2016	05/31/2016	14	28	OK
TW4-22	Chloride	05/23/2016	06/01/2016	9	28	OK
TW4-22	Nitrate/Nitrite (as N)	05/23/2016	06/08/2016	16	28	OK
TW4-24	Chloride	05/23/2016	06/01/2016	9	28	OK
TW4-24	Nitrate/Nitrite (as N)	05/23/2016	06/08/2016	16	28	OK
TW4-25	Chloride	05/23/2016	06/01/2016	9	28	OK
TW4-25	Nitrate/Nitrite (as N)	05/23/2016	06/08/2016	16	28	OK
TW4-60	Chloride	06/08/2016	06/14/2016	6	28	OK
TW4-60	Nitrate/Nitrite (as N)	06/08/2016	06/15/2016	7	28	OK
TWN-60	Chloride	05/18/2016	05/26/2016	8	28	OK
TWN-60	Nitrate/Nitrite (as N)	05/18/2016	05/31/2016	13	28	OK
TWN-65	Chloride	05/17/2016	05/25/2016	8	28	OK
TWN-65	Nitrate/Nitrite (as N)	05/17/2016	05/31/2016	14	28	OK

H-3: Analytical Method Check

Parameter	Method	Method Used by Lab
Nitrate	E353.1 or E353.2	E353.2
Chloride	A4500-Cl B or A4500-Cl E or E300.0	E300.0

Both Nitrate and Chloride were analyzed with the correct analytical method.

H-4 Reporting Limit Check

Location	Analyte	Lab Reporting Limit	Units	Qualifier	Required Reporting Limit	Units	RL Check	Dilution Factor
PIEZ-01	Chloride	10	mg/L		1	mg/L	OK	10
PIEZ-01	Nitrate/Nitrite (as N)	0.1	mg/L		0.1	mg/L	OK	1
PIEZ-02	Chloride	10	mg/L		1	mg/L	OK	10
PIEZ-02	Nitrate/Nitrite (as N)	0.1	mg/L		0.1	mg/L	OK	1
PIEZ-03A	Chloride	10	mg/L		1	mg/L	OK	10
PIEZ-03A	Nitrate/Nitrite (as N)	0.1	mg/L		0.1	mg/L	OK	1
TWN-01	Chloride	10	mg/L		1	mg/L	OK	10
TWN-01	Nitrate/Nitrite (as N)	0.1	mg/L		0.1	mg/L	OK	1
TWN-02	Chloride	10	mg/L		1	mg/L	OK	10
TWN-02	Nitrate/Nitrite (as N)	1	mg/L		0.1	mg/L	OK	1
TWN-03	Chloride	100	mg/L		1	mg/L	OK	100
TWN-03	Nitrate/Nitrite (as N)	0.1	mg/L		0.1	mg/L	OK	1
TWN-04	Chloride	10	mg/L		1	mg/L	OK	10
TWN-04	Nitrate/Nitrite (as N)	0.1	mg/L		0.1	mg/L	OK	-1
TWN-07	Chloride	1	mg/L		1	mg/L	OK	1
TWN-07	Nitrate/Nitrite (as N)	0.1	mg/L		0.1	mg/L	OK	1
TWN-07R	Chloride	1	mg/L		1	mg/L	OK	- 1
TWN-07R	Nitrate/Nitrite (as N)	0.1	mg/L		0.1	mg/L	OK	1_
TWN-18	Chloride	10	mg/L	U	1	mg/L	OK	10
TWN-18	Nitrate/Nitrite (as N)	0.1	mg/L	U	0.1	mg/L	OK	1
TW4-22	Chloride	100	mg/L		1	mg/L	OK	100
TW4-22	Nitrate/Nitrite (as N)	1.0	mg/L		0.1	mg/L	OK	1
TW4-24	Chloride	100	mg/L		1	mg/L	OK	100
TW4-24	Nitrate/Nitrite (as N)	1.0	mg/L		0.1	mg/L	OK	1
TW4-25	Chloride	10	mg/L		1	mg/L	OK	10
TW4-25	Nitrate/Nitrite (as N)	0.1	mg/L		0.1	mg/L	OK	1
TW4-60	Chloride	1	mg/L	U	1	mg/L	OK	1
TW4-60	Nitrate/Nitrite (as N)	0.1	mg/L	U	0.1	mg/L	OK	1
TWN-60	Chloride	1.0	mg/L	U	1 1	mg/L	OK	1
TWN-60	Nitrate/Nitrite (as N)	0.1	mg/L	U	0.1	mg/L	OK	1
TWN-65	Chloride	10	mg/L		-t	mg/L	OK	10
TWN-65	Nitrate/Nitrite (as N)	0.1	mg/L		0.1	mg/L	OK	1

U = Value was reported by the laboratory as nondetect.

H-5 QA/QC Evaluation for Sample Duplicates

Constituent	TWN-18	TWN-65	%RPD	
Chloride	69.9	69.4	0.72	
Nitrogen	0.497	0.486	2.24	

ND - non-detect

NC - not calculated. The RPD was not calucated, because the duplicate sample was reported as non-detect.

H-6 QC Control Limits for Analysis and Blanks

Method Blank Detections

All Method Blanks for the quarter were non-detect.

Matrix Spike % Recovery Comparison

Lab Report	Lab Sample ID	Well	Analyte	MS %REC	MSD %REC	REC Range	RPD
1605437	1605437-001	TWN-07	Nitrate	91.6	82.9	90-110	9.23

^{* -} Recovery was not calculated because the analyte of the sample was greater than 4 times the spike amount

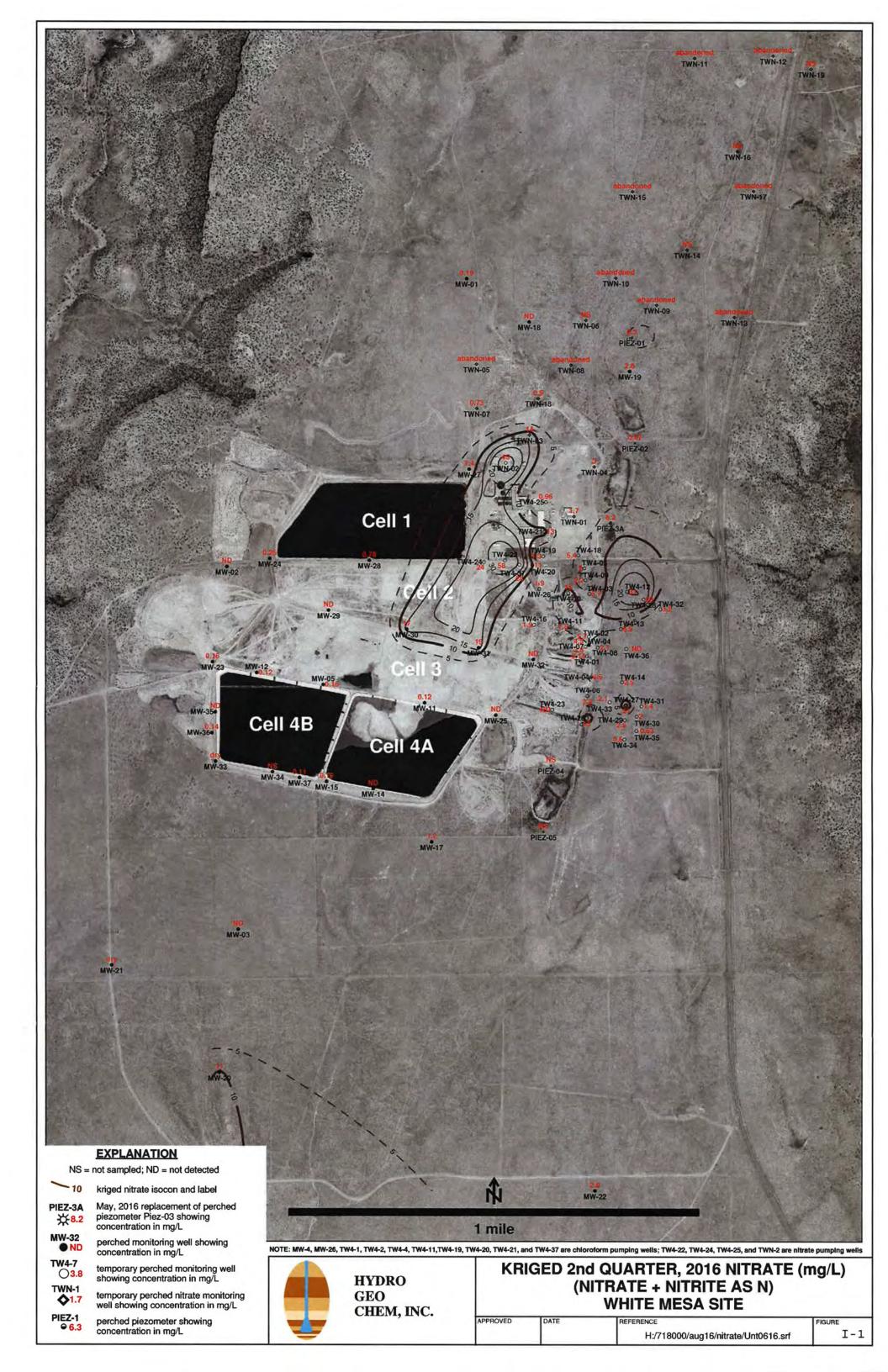
N/A - QC was not performed on an EFRI sample.

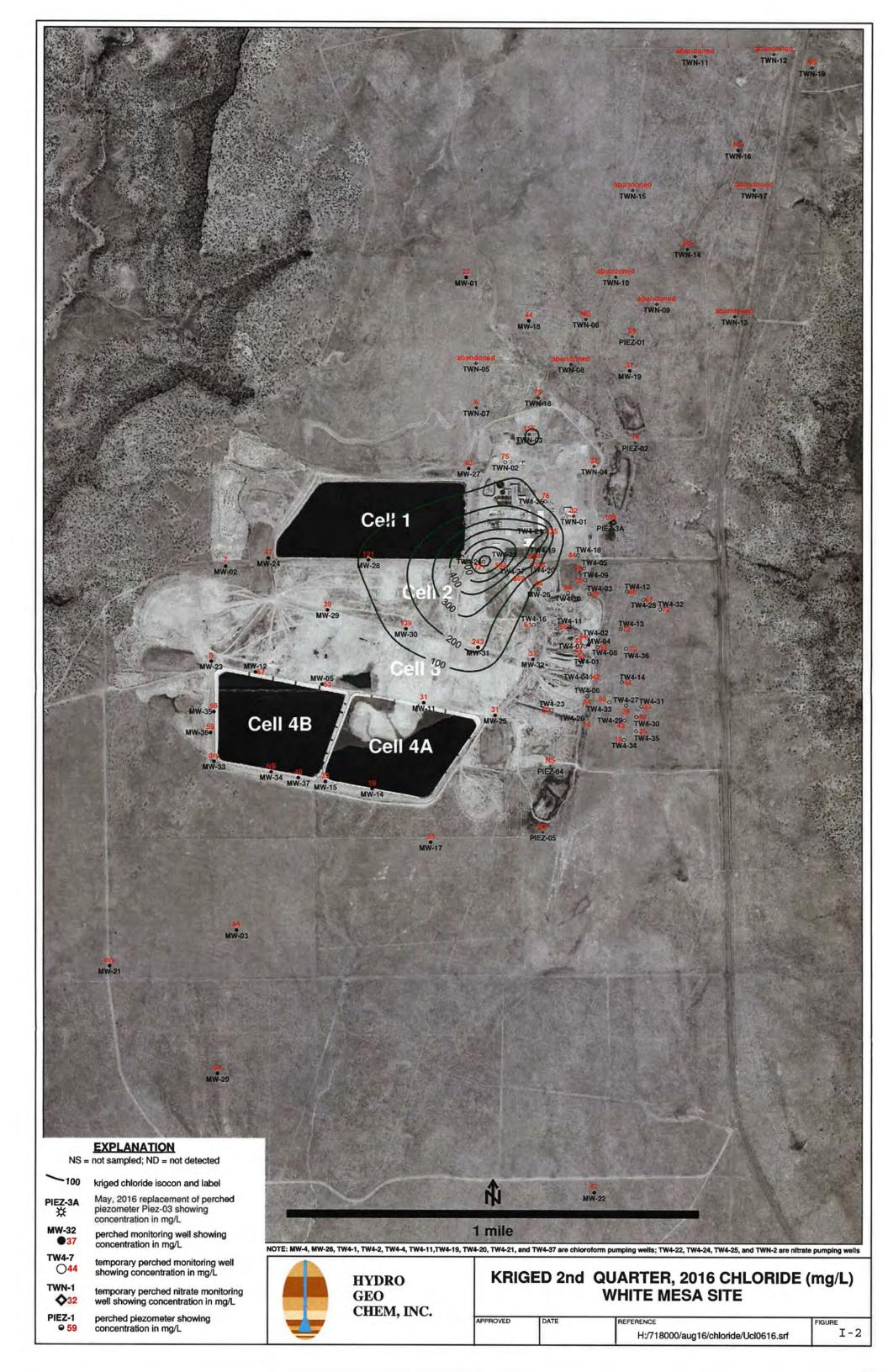
NC - Not calculated

Laboratory Control Sample

All Laboratory Control Samples were within acceptance limits for the quarter.

H-7 Receipt Temperature Evaluation


Sample Batch	Wells in Batch	Temperature	
1605437	Piezometer 1, Piezometer 2, Piezometer 3A, TWN-1, TWN-2, TWN-3, TWN-4, TWN-7, TWN-07R, TWN-18, TWN-60, TWN-65	2.4 °C	
1605584	TW4-22, TW4-24, TW4-25	2.8 °C	
1606210	TW4-60	1.5 °C	


H-8 Rinsate Evaluation

All rinsate and DI blank samples were non-detect for the quarter.

Tab I

Kriged Current Quarter Isoconcentration Maps

Tab J Analyte Concentrations Over Time

Piezometer 1

Date	Nitrate (mg/l)	Chloride (mg/l)
2/19/2009	6.8	NA
7/14/2009	6.8	60
9/22/2009	7.3	78
10/27/2009	7.4	61
6/2/2010	7.2	52
7/19/2010	6.8	52
12/10/2010	6.5	60
1/31/2011	7	60
4/25/2011	6.8	58
7/25/2011	7	53
10/19/2011	6.6	55
1/11/2012	7.1	78
4/20/2012	6.6	58
7/27/2012	7.2	56
10/17/2012	7.66	55
2/18/2013	8.11	56.7
4/24/2013	8.88	53.3
8/28/2013	7.83	55.1
10/16/2013	6.68	54.1
1/13/2014	6.79	56.2
5/7/2014	7.57	52.1
8/6/2014	5.1	55
10/8/2014	5.75	57.6
2/18/2015	6.41	55.9
5/12/2015	5.95	57.5
8/26/2015	4.96	64.2
10/14/2015	6.17	54.4
2/23/2016	8.31	56.5
5/17/2016	6.33	59.1

Piezometer 2

iczoniete, z		
Date	Nitrate (mg/l)	Chloride (mg/l)
2/19/2009	0.5	NA
7/14/2009	0.5	7
9/22/2009	0.5	17
10/27/2009	0.6	7
6/2/2010	0.6	8
7/19/2010	0.6	8
12/10/2010	0.2	6
1/31/2011	0.3	9
4/25/2011	0.3	8
7/25/2011	0.1	9
10/19/2011	0.1	8
1/11/2012	0.1	9
4/20/2012	0.2	8
7/27/2012	0.2	9
10/17/2012	0.192	9.5
2/19/2013	0.218	9.67
4/24/2013	0.172	10.3
8/28/2013	0.198	9.66
10/16/2013	0.364	9.22
1/13/2014	0.169	11.4
5/7/2014	0.736	11.4
8/6/2014	0.8	12
10/8/2014	0.755	12.2
2/18/2015	0.749	12.6
5/12/2015	0.646	13.1
8/26/2015	0.662	15.5
10/14/2015	0.692	13.3
2/23/2016	0.615	13.4
5/17/2016	0.665	14

Piezometer 3A

Date Nitrate (mg/l) Chloride (mg/l)

5/17/2016 8.23 109

т	A A	/N	1

Date	Nitrate (mg/l)	Chloride (mg/l)
2/6/2009	0.7	19
7/21/2009	0.4	17
9/21/2009	0.4	19
10/28/2009	0.5	18
3/17/2010	0.5	17
5/26/2010	0.6	20
9/27/2010	0.6	19
12/7/2010	0.6	14
1/26/2011	0.5	17
4/20/2011	0.5	19
7/26/2011	0.5	14
10/17/2011	0.5	10
1/9/2012	0.6	15
4/18/2012	0.6	17
7/24/2012	0.6	17
10/15/2012	0.432	17.5
2/18/2013	0.681	17.6
4/23/2013	0.84	17.4
8/27/2013	1.24	24.1
10/16/2013	1.61	26.8
1/14/2014	1.47	29.2
5/6/2014	1.63	31.1
8/5/2014	1.7	28
10/8/2014	1.46	27.6
2/18/2015	1.37	27.8
5/13/2015	0.65	29.2
8/25/2015	0.324	33.2
10/13/2015	1.35	27.7
2/23/2016	1.51	30.3
5/17/2016	1.73	32.1

TIA	/ R I	
1 1/1	ľ	-/

TWN-2			
Date	Nitrate (mg/l)	Chloride (mg/l)	
2/6/2009	25.4	29	
7/21/2009	25	25	
9/21/2009	22.6	17	
11/2/2009	20.8	55	
3/24/2010	62.1	85	
6/2/2010	69	97	
9/29/2010	69	104	
12/9/2010	48	93	
2/1/2011	43	93	
4/28/2011	40	85	
7/28/2011	33	74	
10/20/2011	33	76	
1/12/2012	31	86	
4/20/2012	48	103	
7/31/2012	54	93	
10/17/2012	22.1	79	
2/19/2013	57.3	80.5	
4/24/2013	57.7	82.1	
8/27/2013	80	75.9	
10/16/2013	111	70.4	
1/13/2014	42.6	72.4	
5/7/2014	44.7	84.9	
8/6/2014	42	80	
10/8/2014	70.6	81	
2/18/2015	48.6	84.8	
5/12/2015	52.8	82.6	
8/25/2015		87.8	
10/14/2015	44.9	74.9	
2/23/2016	86.3	73.9	
5/17/2016	45.4	74.5	

TWN-3	3

TWN-3			
Date	Nitrate (mg/l)	Chloride (mg/l)	
2/6/2009	23.6	96	
7/21/2009	25.3	96	
9/21/2009	27.1	99	
11/2/2009	29	106	
3/25/2010	25.3	111	
6/3/2010	26	118	
7/15/2010	27	106	
12/10/2010	24	117	
2/1/2011	24	138	
4/28/2011	26	128	
7/29/2011	25	134	
10/20/2011	25	129	
1/12/2012	25	143	
4/20/2012	24	152	
7/31/2012	27	158	
10/17/2012	12.1	149	
2/19/2013	22.2	157	
4/24/2013	27.2	158	
8/28/2013	20.9	171	
10/17/2013	23.5	163	
1/15/2014	19.6	160	
5/7/2014	23.6	168	
8/6/2014	19.5	174	
10/9/2014	19.1	153	
2/19/2015	19.4	164	
5/14/2015	17.2	141	
8/26/2015	16.2	156	
10/14/2015	16.3	129	
2/24/2016	16.8	128	
5/18/2016	13.5	116	

		-4

TWN-4			
Date	Nitrate (mg/l)	Chloride (mg/l)	
2/6/2009	1	13	
7/21/2009	0.05	12	
9/21/2009	0.4	13	
10/28/2009	0.4	11	
3/16/2010	0.9	22	
5/27/2010	1.0	22	
9/27/2010	0.9	19	
12/8/2010	1	21	
1/25/2011	0.9	21	
4/20/2011	0.9	21	
7/26/2011	1.1	35	
10/18/2011	0.9	20	
1/9/2012	0.9	20	
4/18/2012	1.1	24	
7/25/2012	1.4	25	
10/15/2012	1.45	26.4	
2/18/2013	1.51	25.3	
4/23/2013	1.63	24.4	
8/27/2013	1.58	27.2	
10/16/2013	1.69	29.4	
1/14/2014	1.41	28.4	
5/6/2014	1.55	29.6	
8/5/2014	2.0	28	
10/8/2014	1.44	30.7	
2/18/2015	1.48	31.5	
5/13/2015	0.733	31.9	
8/25/2015	0.974	35.2	
10/13/2015	1.58	28.4	
2/23/2016	2.02	30.7	
5/17/2016	2.97	31.7	

-	-				-	
	ı١	Λ	/	N	-	/

TWN-7			
Date	Nitrate (mg/l)	Chloride (mg/l)	
8/25/2009	ND	11.00	
9/21/2009	ND	7.00	
11/10/2009	0.1	7.00	
3/17/2010	0.8	6.00	
5/28/2010	1.2	6.00	
7/14/2010	1.6	7.00	
12/10/2010	1	4.00	
1/27/2011	1.3	6.00	
4/21/2011	1.7	6.00	
7/29/2011	0.7	5.00	
10/19/2011	2.2	6.00	
1/11/2012	2.3	5.00	
4/20/2012	1.2	6.00	
7/26/2012	0.9	6.00	
10/16/2012	0.641	5.67	
2/19/2013	0.591	5.68	
4/24/2013	1.16	5.88	
8/28/2013	0.835	6.96	
10/16/2013	0.986	5.70	
1/15/2014	0.882	5.75	
5/7/2014	0.564	5.26	
8/6/2014	0.9	6.00	
10/9/2014	0.968	5.93	
2/19/2015	1.04	5.58	
5/14/2015	0.779	6.18	
8/26/2015	0.348	6.12	
10/14/2015	0.672	5.84	
2/24/2016	0.240	6.06	
5/18/2016	0.732	6.26	

T١	٨	/	V.	-1	8
		, ,		_	. •

TWN-18		
Date	Nitrate (mg/l)	Chloride (mg/l)
11/2/2009	1.3	57
3/17/2010	1.6	42
6/1/2010	1.8	63
9/27/2010	1.8	64
12/9/2010	1.6	59
1/27/2011	1.4	61
4/26/2011	1.8	67
7/28/2011	1.8	65
10/18/2011	1.9	60
1/10/2012	1.9	64
4/19/2012	2.1	64
7/26/2012	2.3	67
10/16/2012	1.95	67.5
2/18/2013	2.27	68.7
4/23/2013	2.32	64.3
8/27/2013	2.04	70.4
10/16/2013	2.15	67.3
1/14/2014	2.33	68.4
5/6/2014	2.18	76.5
8/5/2014	1.8	70
10/8/2014	1.47	74.8
2/18/2015	1.00	73.3
5/13/2015	1.35	76.6
8/25/2015	0.35	81.3
10/13/2015	0.668	69
2/23/2016	0.648	67.6
5/17/2016	0.497	69.9

TW4-19			
Date	Nitrate (mg/l)	Date	Chloride (mg/l)
7/22/2002	42.80	12/7/2005	81
9/12/2002	47.60	3/9/2006	86
3/28/2003	61.40	7/20/2006	123
6/23/2003	11.40	11/9/2006	134
7/15/2003	6.80	2/28/2007	133
8/15/2003	4.00	8/15/2007	129
9/12/2003	5.70	10/10/2007	132
9/25/2003	9.20	3/26/2008	131
10/29/2003	7.70	6/25/2008	128
11/9/2003	4.80	9/10/2008	113
8/16/2004	9.91	10/15/2008	124
9/17/2004	4.50	3/4/2009	127
3/16/2005	5.30	6/23/2009	132
6/7/2005	5.70	9/14/2009	43
8/31/2005	4.60	12/14/2009	124
12/1/2005	0.10	2/17/2010	144
3/9/2006	4.00	6/9/2010	132
6/14/2006	5.20	8/16/2010	142
7/20/2006	4.30	10/11/2010	146
11/9/2006	4.60	2/17/2011	135
2/28/2007	4.00	6/7/2011	148
8/15/2007	4.10	8/17/2011	148
10/10/2007	4.00	11/17/2011	148
3/26/2008	2.20	1/23/2012	138
6/25/2008	2.81	6/6/2012	149
9/10/2008	36.20	9/5/2012	149
10/15/2008	47.80	10/3/2012	150
3/4/2009	3.20	2/11/2013	164
6/23/2009	2.40	6/5/2013	148
9/14/2009	0.10	9/3/2013	179
12/14/2009	26.70	10/29/2013	206 134
2/17/2010	2.00 4.40	1/27/2014 5/19/2014	152
6/9/2010 8/16/2010	5.90	8/11/2014	140
10/11/2010	2.70	10/21/2014	130
2/17/2011	17.00	3/9/2015	238
6/7/2011	12.00	6/8/2015	180
8/17/2011	3.00	8/31/2015	326
11/17/2011	5.00	10/19/2015	252
1/23/2012	0.60	3/9/2016	276
6/6/2012	2.40	5/23/2016	201
9/5/2012	2.50	3/23/2010	201
10/3/2012	4.10		
2/11/2013	7.99		
6/5/2013	2.95		
0, 3, 2013	2.55		

TW4-19			
Date	Nitrate (mg/l)	Date	Chloride (mg/l)
9/3/2013	17.60		
10/29/2013	4.70		
1/27/2014	1.62		
5/19/2014	1.34		
8/11/2014	1.60		
10/21/2014	4.72		
3/9/2015	8.56		
6/8/2015	0.92		
8/31/2015	11.60		
10/19/2015	10.60		
3/9/2016	15.7		
5/23/2016	1.27		

The sampling program for TW4-19 was updated in the fourth quarter of 2005 to include analysis for chloride as well as nitrate. This change accounts for the different number of data points represented above.

т	۱۸	11	ാ	1
- 1	V١	14	-2	1

TW4-21			
Date	Nitrate (mg/l)	Date	Chloride (mg/l)
5/25/2005	14.6	12/7/2005	353
8/31/2005	10.1	3/9/2006	347
11/30/2005	9.6	7/20/2006	357
3/9/2006	8.5	11/8/2006	296
6/14/2006	10.2	2/28/2007	306
7/20/2006	8.9	6/27/2007	327
11/8/2006	8.7	8/15/2007	300
2/28/2007	8.7	10/10/2007	288
6/27/2007	8.6	3/26/2008	331
8/15/2007	8.6	6/25/2008	271
10/10/2007	8.3	9/10/2008	244
3/26/2008	14.3	10/15/2008	284
6/25/2008	8.8	3/11/2009	279
9/10/2008	7.6	6/24/2009	291
10/15/2008	8.0	9/15/2009	281
3/11/2009	8.3	12/22/2009	256
6/24/2009	8.1	2/25/2010	228
9/15/2009	9.2	6/10/2010	266
12/22/2009	8.4	8/12/2010	278
2/25/2010	8.4	10/13/2010	210
6/10/2010	12.0	2/22/2011	303
8/12/2010	14.0	6/1/2011	297
10/13/2010	7.0	8/17/2011	287
2/22/2011	9.0	11/16/2011	276
6/1/2011	13.0	1/19/2012	228
8/17/2011	14.0	6/13/2012	285
11/16/2011	13.0	9/13/2012	142
1/19/2012	15.0	10/4/2012	270
6/13/2012	11.0	2/13/2013	221
9/13/2012	13.0	6/18/2013	243
10/4/2012	14.0	9/12/2013	207
2/13/2013	11.8	11/13/2013	206
6/18/2013	13.8	2/5/2014	200
9/12/2013	10.3	5/22/2014	243
11/13/2013	9.0	8/27/2014	230
2/5/2014	11.4	10/29/2014	252
5/22/2014	11.5	3/12/2015	255
8/27/2014	7.1	6/8/2015	494
10/29/2014	10.0	8/31/2015	499

TW4-21			
Date	Nitrate (mg/l)	Date	Chloride (mg/l)
3/12/2015	10.9	10/19/2015	413
6/8/2015	13.1	3/9/2016	452
8/31/2015	14.7	5/23/2016	425
10/19/2015	14.3		
3/9/2016	14.6		
5/23/2016	13.1		

The sampling program for TW4-21 was updated in the fourth quarter of 2005 to include analysis for chloride as well as nitrate. This change accounts for the different number of data points represented above.

TW4-22

Date	Nitrate (mg/l)	Chloride (mg/l)
2/28/2007	20.9	347
6/27/2007	19.3	273
8/15/2007	19.3	259
10/10/2007	18.8	238
3/26/2008	39.1	519
6/25/2008	41.9	271
9/10/2008	38.7	524
10/15/2008	36.3	539
3/11/2009	20.7	177
6/24/2009	20.6	177
9/15/2009	40.3	391
12/29/2009	17.8	175
3/3/2010	36.6	427
6/15/2010	19	134
8/12/2010	18	127
8/24/2010	15	130
10/13/2010	16	134
2/23/2011	18	114
6/1/2011	17	138
8/17/2011	15	120
11/16/2011	19	174
1/19/2012	14	36
6/13/2012	12.8	35
9/12/2012	7	121
10/4/2012	14	130
2/11/2013	58	635
6/5/2013	50.2	586
9/3/2013	29.7	487
10/29/2013	45.2	501
1/27/2014	54.6	598
5/19/2014	47.2	614
8/11/2014	41.5	540
10/21/2014	54.9	596
3/9/2015	69.2	675
6/8/2015	47.1	390
8/31/2015	64.7	557
10/19/2015	56.1	567
3/9/2016	31.1	583
5/23/2016	58.4	598

TW4-24	Alitenta (/II)	Chinaida (ma - /III
Date	Nitrate (mg/l)	Chloride (mg/l)
6/27/2007	26.1	770
8/15/2007	29	791
10/10/2007	24.7	692
3/26/2008	24.4	740
6/25/2008	45.3	834
9/10/2008	38.4	1180
10/15/2008	44.6	1130
3/4/2009	30.5	1010
6/24/2009	30.4	759
9/15/2009	30.7	618
12/17/2009	28.3	1080
2/25/2010	33.1	896
6/9/2010	30	639
8/11/2010	32	556
8/24/2010	31	587
10/6/2010	31	522
2/17/2011	31	1100
5/26/2011	35	1110
8/17/2011	34	967
11/16/2011	35	608
1/18/2012	37	373
6/6/2012	37	355
8/30/2012	37	489
10/3/2012	38	405
2/11/2013	35.9	1260
6/5/2013	23.7	916
9/3/2013	32.6	998
10/29/2013	34.6	1030
1/27/2014	31.6	809
5/19/2014	35	1020
8/11/2014	31.5	1150
10/21/2014	35.7	1050
3/9/2015	34.6	944
6/8/2015	31.8	1290
8/31/2015	25.3	788
10/19/2015	29.6	909
3/9/2016	29.1	989
5/23/2016	24.2	771

TW4-25		
Date	Nitrate (mg/l)	Chloride (mg/l)
6/27/2007	17.1	395
8/15/2007	16.7	382
10/10/2007	17	356
3/26/2008	18.7	374
6/25/2008	22.1	344
9/10/2008	18.8	333
10/15/2008	21.3	366
3/4/2009	15.3	332
6/24/2009	15.3	328
9/15/2009	3.3	328
12/16/2009	14.2	371
2/23/2010	14.4	296
6/8/2010	16	306
8/10/2010	14	250
10/5/2010	15	312
2/16/2011	15	315
5/25/2011	16	321
8/16/2011	16	276
11/15/2011	16	294
1/18/2012	16	304
5/31/2012	16	287
9/11/2012	17	334
10/3/2012	17	338
2/11/2013	9.04	190
6/5/2013	5.24	136
9/3/2013	5.69	119
10/29/2013	6.10	88.6
1/27/2014	2.16	85.7
5/19/2014	1.21	51.1
8/11/2014	1.6	67
10/21/2014	1.03	58.1
3/9/2015	14.4	310
6/8/2015	1.14	58.3
8/31/2015	1.63	69.2
10/21/2015	1.78	93.7
3/9/2016	0.837	62.7
5/23/2016	0.959	75.5

MW-30			
Date	Nitrate (mg/l)	Date	Chloride (mg/l)
6/22/2005	12.4	6/22/2005	125
9/22/2005	12.8	9/22/2005	125
12/14/2005	13.6	12/14/2005	128
3/22/2006	13.8	3/22/2006	125
6/21/2006	14.5	6/21/2006	124
9/13/2006	14.1	9/13/2006	118
10/25/2006	14.6	10/25/2006	124
3/15/2007	14.4	3/15/2007	125
8/22/2007	14.6	8/22/2007	126
10/24/2007	14.9	10/24/2007	122
3/19/2008	14.8	3/19/2008	118
6/3/2008	18.7	6/3/2008	125
8/4/2008	17.3	8/4/2008	121
11/5/2008	15.6	11/5/2008	162
2/3/2009	15.3	2/3/2009	113
5/13/2009	15.1	5/13/2009	122
8/24/2009	20.9	8/24/2009	118
10/14/2009	15.0	10/14/2009	129
1/20/2010	15.4	1/20/2010	106
2/9/2010	16.1	2/9/2010	127
4/27/2010	15.8	4/27/2010	97
5/24/2010	17.0	9/14/2010	111
6/15/2010	15.3	11/9/2010	126
8/24/2010	16.0	2/1/2011	134
9/14/2010	15.0	4/11/2011	134
10/19/2010	15.0	5/10/2011	128
11/9/2010	15.0	6/20/2011	127
12/14/2010	16.0	7/5/2011	127
1/10/2011	15.0	8/3/2011	126
2/1/2011	16.0	9/7/2011	145
3/14/2011	17.0	10/4/2011	129
4/11/2011	16.0	11/8/2011	122
5/10/2011	16.0	12/12/2011	124
6/20/2011	17.0	1/24/2012	124
7/5/2011	17.0	2/14/2012	126
8/3/2011	14.0	3/14/2012	128
9/7/2011	16.0	4/10/2012	128
10/4/2011	16.0	5/2/2012	124
11/8/2011	16.0	6/18/2012	131
12/12/2011	16.0	7/10/2012	128
1/24/2012	17.0	8/7/2012	139
2/14/2012	17.0	9/19/2012	130
3/14/2012	18.0	10/23/2012	135
4/10/2012	17.0 16.0	11/13/2012	114
5/2/2012	16.0	12/26/2012	122

MW-30			
Date	Nitrate (mg/l)	Date	Chloride (mg/l)
6/18/2012	15.0	1/23/2013	128
7/10/2012	17.0	2/26/2013	129
8/7/2012	18.0	3/20/2013	126
9/19/2012	16.0	4/17/2013	117
10/23/2012	16.2	5/15/2013	119
11/13/2012	18.5	6/25/2013	127
12/26/2012	17.2	7/10/2013	130
1/23/2013	19.2	8/20/2013	126
2/26/2013	21.4	9/18/2013	131
3/20/2013	14.3	10/22/2013	128
4/17/2013	16.8	11/20/2013	124
5/15/2013	18.8	12/18/2013	134
6/25/2013	16.1	1/8/2014	131
7/10/2013	17.6	2/25/2014	135
8/20/2013	16.4	3/11/2014	144
9/18/2013	16.9	4/23/2014	154
10/22/2013	19.7	5/14/2014	128
11/20/2013	19.5	6/3/2014	128
12/18/2013	20.7	7/29/2014	140
1/8/2014	20.3	8/20/2014	139
2/25/2014	18.4	9/9/2014	136
3/11/2014	21.3	10/7/2014	136
4/23/2014	18.3	11/10/2014	154
5/14/2014	17.9	12/10/2014	138
6/3/2014	19.4	1/21/2015	144
7/29/2014	15.6	2/4/2015	136
8/20/2014	13.8	3/3/2015	132
9/9/2014	16.8	4/8/2015	142
10/7/2014	11.0	5/12/2015	145

11/10/2014

12/10/2014

1/21/2015 2/4/2015

3/3/2015

16.2

17.1

19.5

14.9

17.3

6/24/2015

7/7/2015

8/11/2015 9/15/2015

11/11/2015

142

145

165

165

140

MW-30			
Date	Nitrate (mg/l)	Date	Chloride (mg/l)
4/8/2015	17.0	2/10/2016	145
5/12/2015	16.1	5/4/2016	139
6/24/2015	15.8		
7/7/2015	15.3		
8/11/2015	17.9		
9/15/2015	17.3		
11/11/2015	16.3		
2/10/2016	20.0		
5/4/2016	17.3		

Under the groundwater sampling program, accelerated monitoring for nitrate began in MW-30 prior to when the accelerated monitoring for chloride began. This difference accounts for the different number of data points represented above.

	A	٠			3	4
- IN	/1	١	Λ	,	-3	

MW-31			
Date	Nitrate (mg/l)	Date	Chloride (mg/l)
6/22/2005	24.2	6/22/2005	139
9/22/2005	22.4	9/22/2005	136
12/14/2005	23.8	12/14/2005	135
3/22/2006	24.1	3/22/2006	133
6/21/2006	25.3	6/21/2006	138
9/13/2006	24.6	9/13/2006	131
10/25/2006	25.1	10/25/2006	127
3/15/2007	23.2	3/15/2007	132
3/15/2007	22.0	3/15/2007	132
8/27/2007	23.3	8/27/2007	136
10/24/2007	24.6	10/24/2007	122
3/19/2008	25.0	3/19/2008	124
6/3/2008	29.3	6/3/2008	128
8/4/2008	28.7	8/4/2008	124
11/11/2008	29.9	11/11/2008	119
2/3/2009	23.4	2/3/2009	115
5/13/2009	22.4	5/13/2009	124
8/24/2009	15.4	8/24/2009	122
10/14/2009	22.6	10/14/2009	138
2/9/2010	21.7	2/9/2010	128
4/20/2010	22.5	4/20/2010	128
5/21/2010	23.0	9/13/2010	139
6/15/2010	21.1	11/9/2010	138
8/24/2010	22.0	2/1/2011	145
9/13/2010	21.0	4/1/2011	143
10/19/2010	20.0	5/10/2011	143
11/9/2010	20.0	6/20/2011	145
12/14/2010	20.0	7/5/2011	148
1/10/2011	19.0	8/2/2011	148
2/1/2011	21.0	9/6/2011	148
3/14/2011	22.0	10/3/2011	145
4/1/2011	21.0	11/8/2011	145
5/10/2011	20.0	12/12/2011	148
6/20/2011	22.0	1/24/2012	155
7/5/2011	22.0	2/13/2012	150
8/2/2011	20.0	3/13/2012	152
9/6/2011	21.0	4/9/2012	160
10/3/2011	21.0	5/2/2012	151
11/8/2011	21.0	6/18/2012	138
12/12/2011	21.0	7/9/2012	161
1/24/2012	21.0	8/6/2012	175
2/13/2012	21.0	9/18/2012	172
3/13/2012	22.0	10/22/2012	157
4/9/2012	21.0	11/6/2012	189
5/2/2012	20.0	12/18/2012	170

B 4	۱ A	•	2	1
М	V١	٧.	-3	ч

MW-31			
Date	Nitrate (mg/l)	Date	Chloride (mg/l)
6/18/2012	21.6	1/22/2013	176
7/9/2012	21.0	2/19/2013	174
8/6/2012	21.0	3/19/2013	168
9/18/2012	21.0	4/16/2013	171
10/22/2012	18.0	5/13/2013	169
11/6/2012	23.6	6/24/2013	179
12/18/2012	22.2	7/9/2013	182
1/22/2013	22.8	8/19/2013	183
2/19/2013	19.3	9/17/2013	193
3/19/2013	19.1	10/23/2013	188
4/16/2013	18.8	11/18/2013	174
5/13/2013	23.8	12/17/2013	203
6/24/2013	20.0	1/7/2014	194
7/9/2013	21.7	2/17/2014	197
8/19/2013	16.0	3/10/2014	230
9/17/2013	21.2	4/28/2014	230
10/23/2013	21.2	5/13/2014	200
11/18/2013	23.9	6/2/2014	173
12/17/2013	24.2	7/28/2014	200
1/7/2014	24.0	8/18/2014	210
2/17/2014	20.6	9/3/2014	210
3/10/2014	26.2	10/6/2014	205
4/28/2014	19.1	11/4/2014	204
5/13/2014	23.3	12/9/2014	215
6/2/2014	23.1	1/20/2015	226
7/28/2014	19.0	2/2/2015	211
8/18/2014	15.2	3/3/2015	209
9/3/2014	18.9	4/7/2015	211
10/6/2014	15.9	5/11/2015	225
11/4/2014	20.9	6/23/2015	228
12/9/2014	17.0	7/6/2015	222
1/20/2015	20.9	8/10/2015	264
2/2/2015	18.7	9/15/2015	231
3/3/2015	19.8	11/9/2015	215

MW-31			
Date	Nitrate (mg/l)	Date	Chloride (mg/l)
4/7/2015	19.0	2/15/2016	246
5/11/2015	18.4	5/3/2016	243
6/23/2015	18.0		
7/6/2015	18.8		
8/10/2015	19.9		
9/15/2015	18.9		
11/9/2015	18.4		
2/15/2016	18.8		
5/3/2016	18.6		

Under the groundwater sampling progran, accelerated monitoring for nitrate began in MW-31 prior to when the accelerated monitoring for chloride began. This difference accounts for the different number of data points represented above.

Tab K Concentration Trend Graphs

Piezometer 1 Nitrate Concentrations

71-daS May-16 Dec-14 £1-guA Apr-12 OT-VOM 60-Inc Feb-08 (J\gm) 6 50 9 30 10 9 80 2 20 0

Piezometer 1 Chloride Concentrations

Sep-17 May-16 Dec-14 -- Et-guA -Sr-1qA Or-voN - 60-Inr o ├ 80-08 9.0 9.0 0.3 0.7 0.4 0.5 0.1 (J/Bm)

Piezometer 2 Nitrate Concentrations

Piezometer 2 Chloride Concentrations

TWN-1 Nitrate Concentrations

Sep-17 May-16 Dec-14 £1-guA St-1qA OT-VON 60-Inc Feb-08 25 20 15 10 30 2 35 (J/Bm)

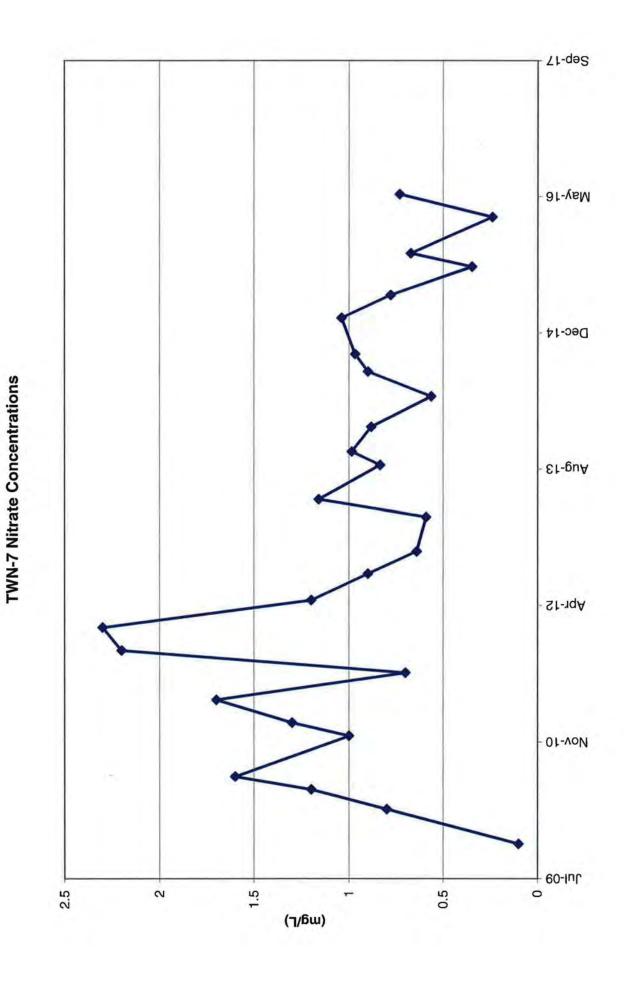
TWN-1 Chloride Concentrations

TWN-2 Nitrate Concentrations

Sep-17 May-16 Dec-14 Et-guA Apr-12 OT-VON 60-Inc Feb-08 120 100 80 40 20 9 (mg/L)

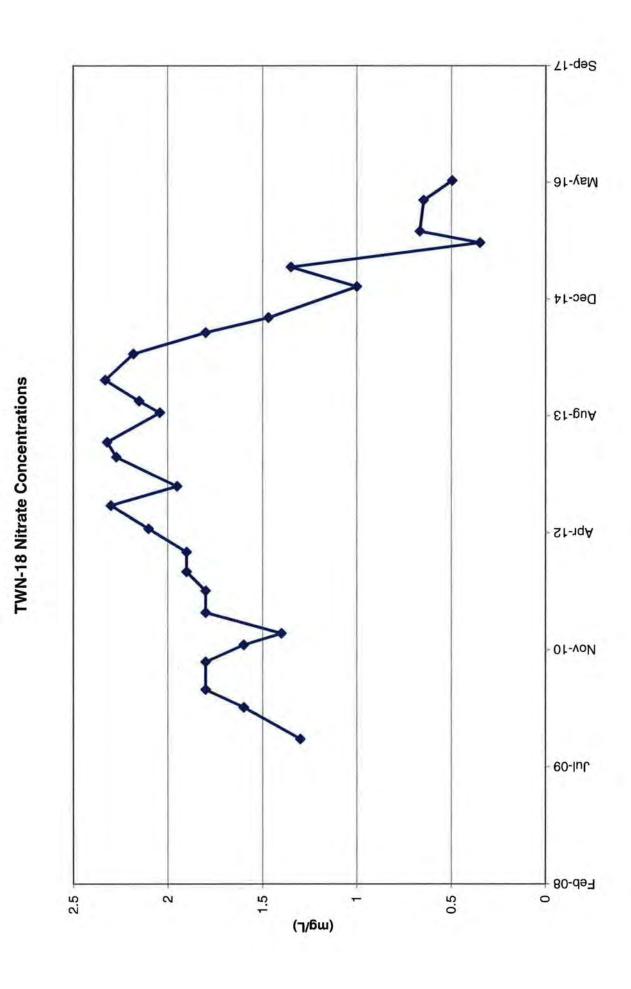
TWN-2 Chloride Concentrations

TWN-3 Nitrate Concentrations

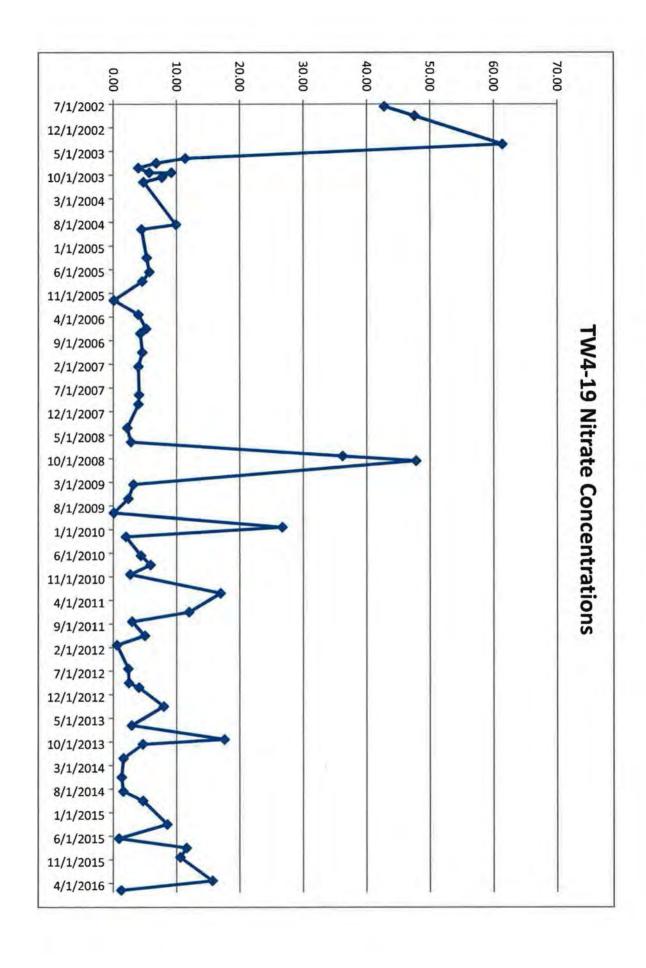

Sep-17 May-16 Dec-14 &r-guA St-1qA OT-VON 60-Inr Feb-08 (J/gm) 200 180 160 140 120 8 09 40 20

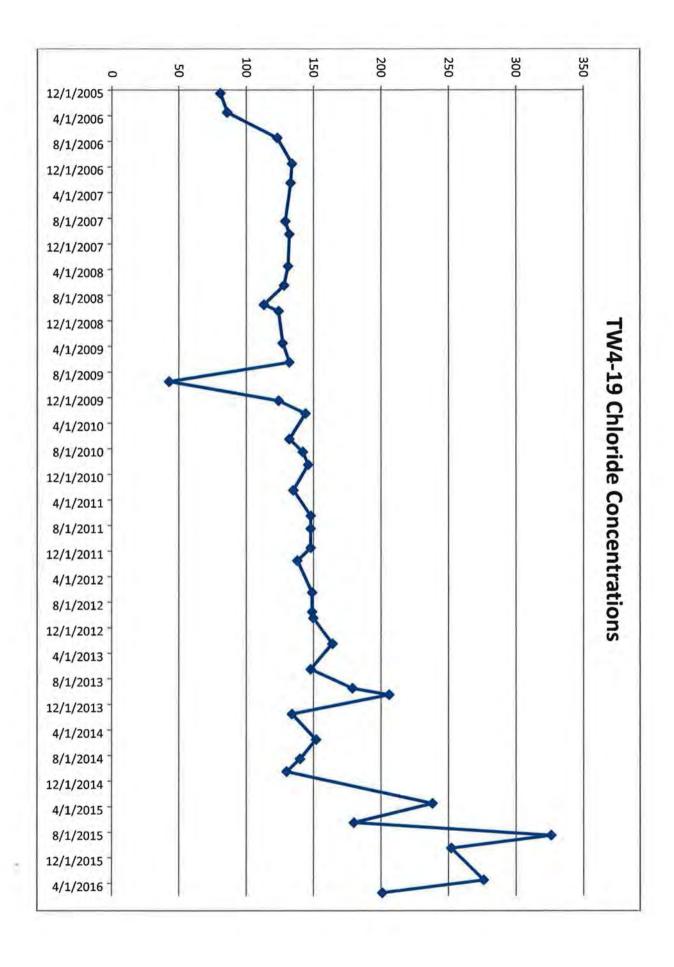
TWN-3 Chloride Concentrations

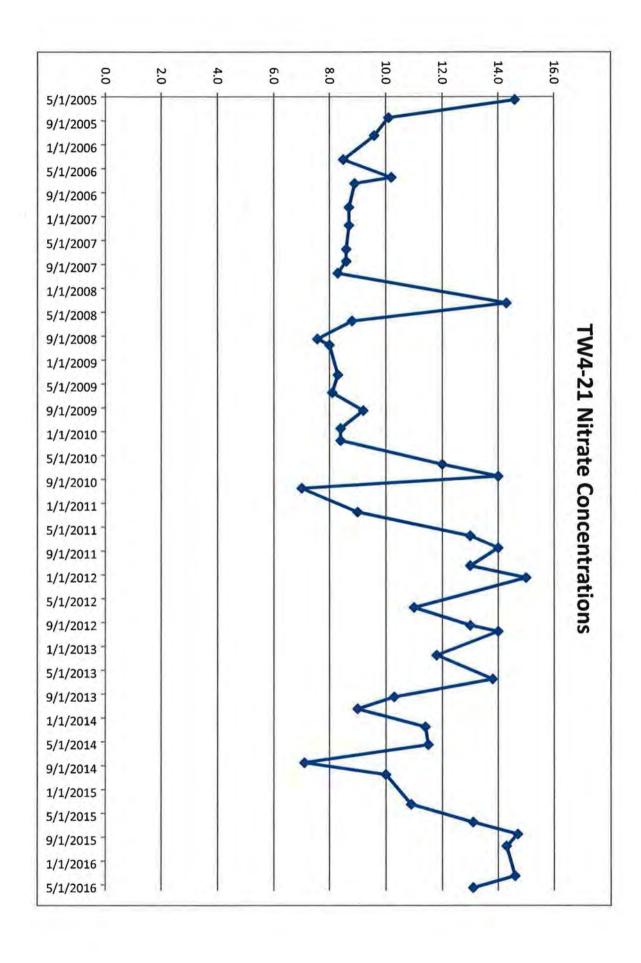
TWN-4 Nitrate Concentrations

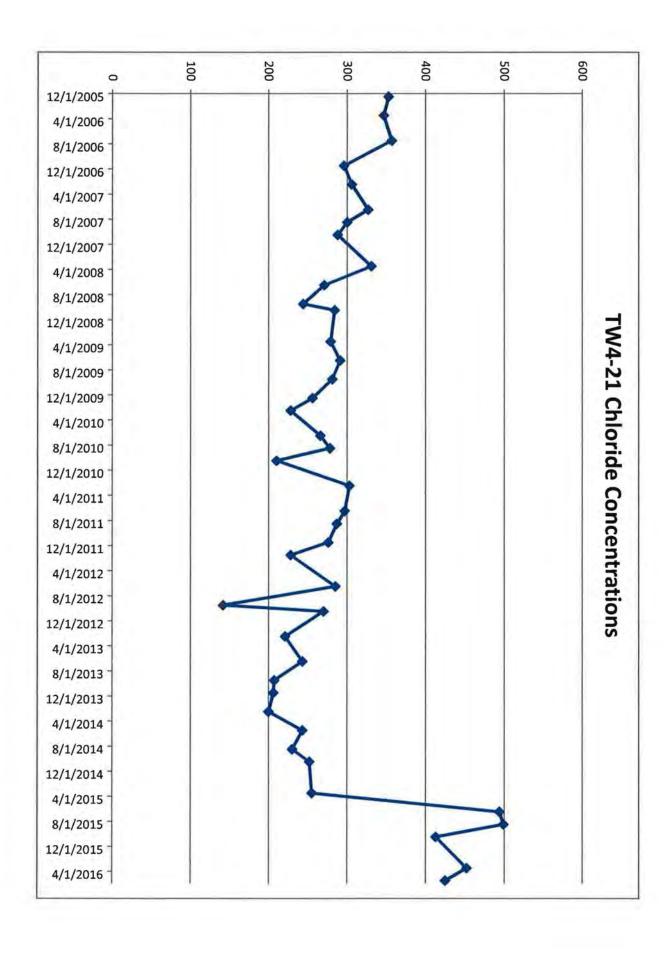

71-qa2 May-16-Dec-14 Et-guA Apr-12 OT-VON 60-Inc Feb-08 35 (ח/bm) 9 40 30 25 12 2

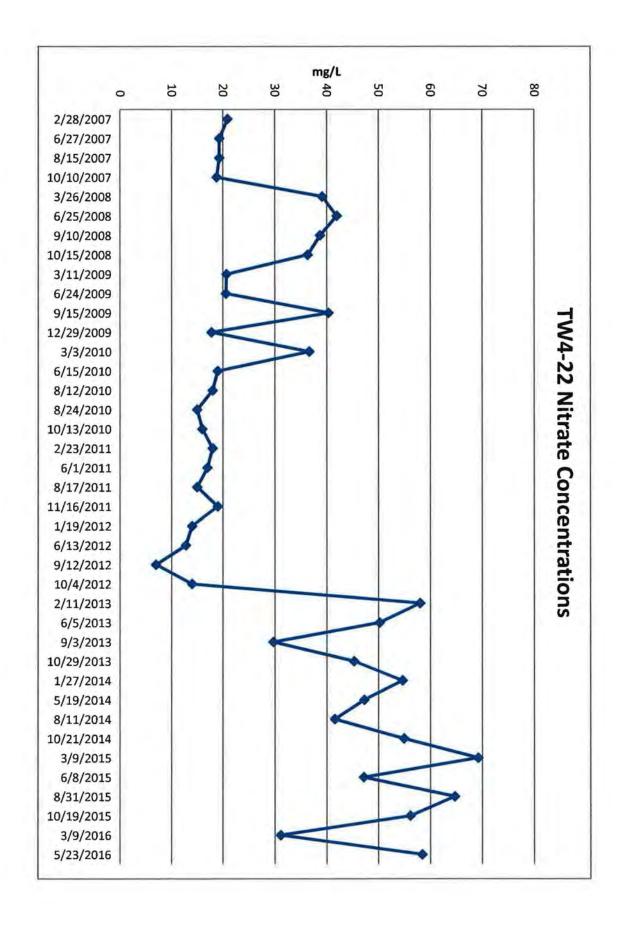
TWN-4 Chloride Concentrations

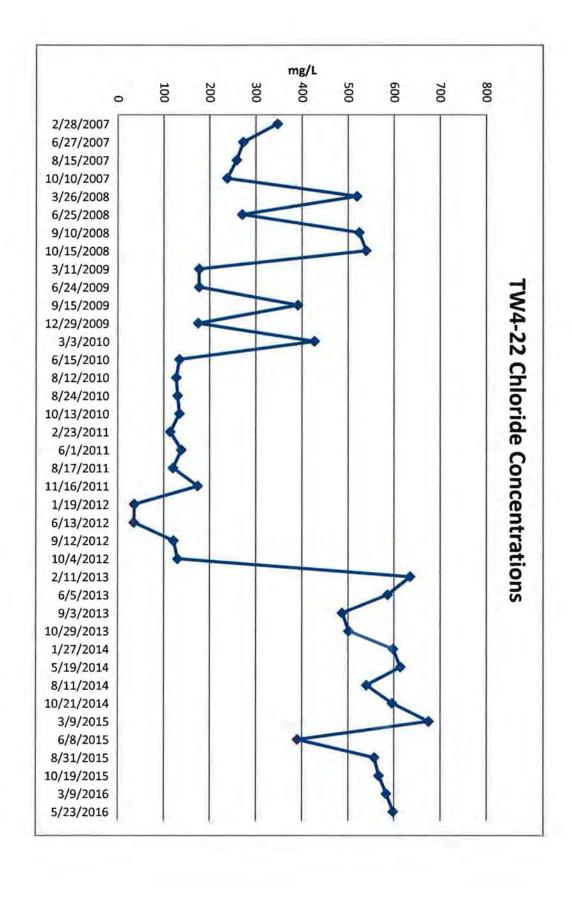

Sep-17 May-16 Dec-14 - £1-guA Apr-12 OT-VON - 60-Inr 0 80-08 (7/**66i)** 10.00 8.00 4.00 2.00

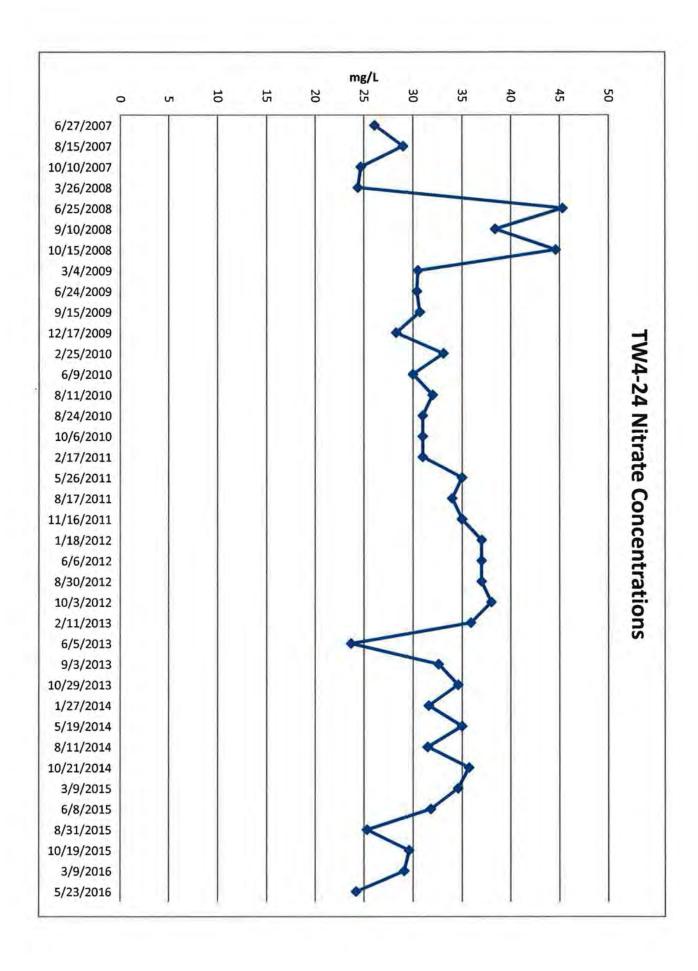

TWN-7 Chloride Concentrations

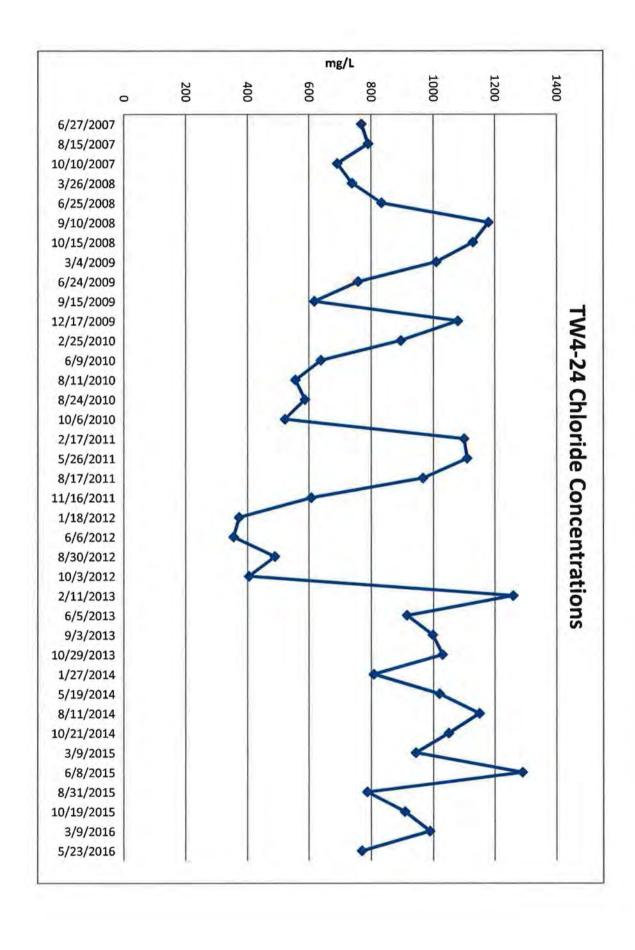


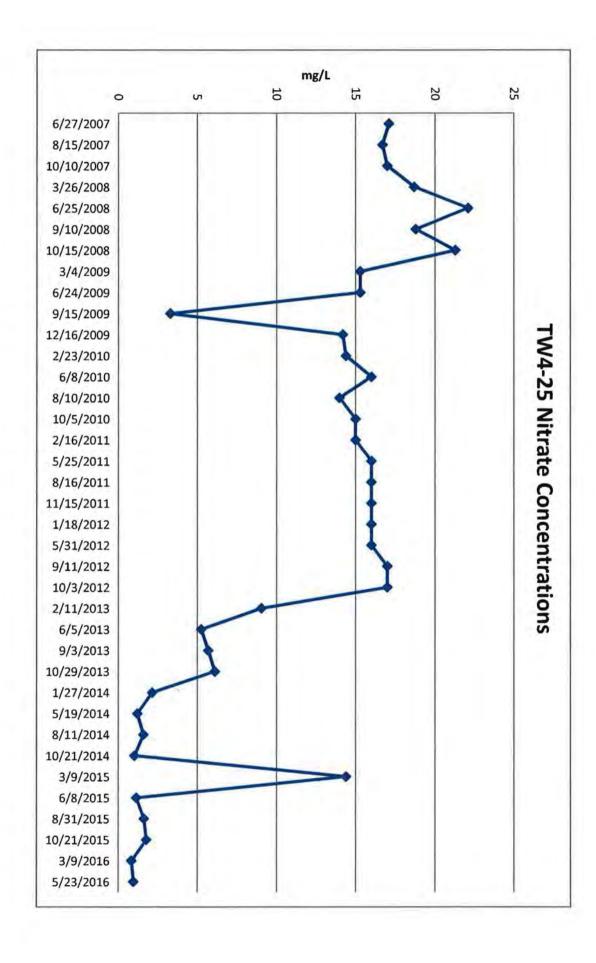

Sep-17 May-16-Dec-14 -&t-guA St-1QA OT-VON 60-Inc o ⊢ 80-d∋∃ 70 10 80 09 (J\gm) 6 50 20 30 90

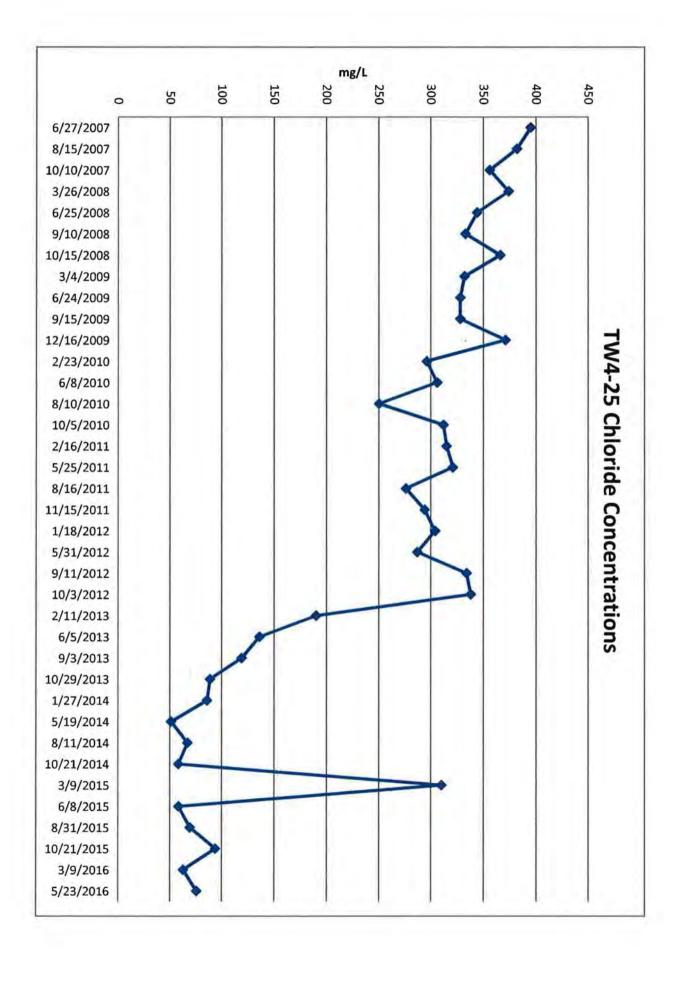

TWN-18 Chloride Concentrations

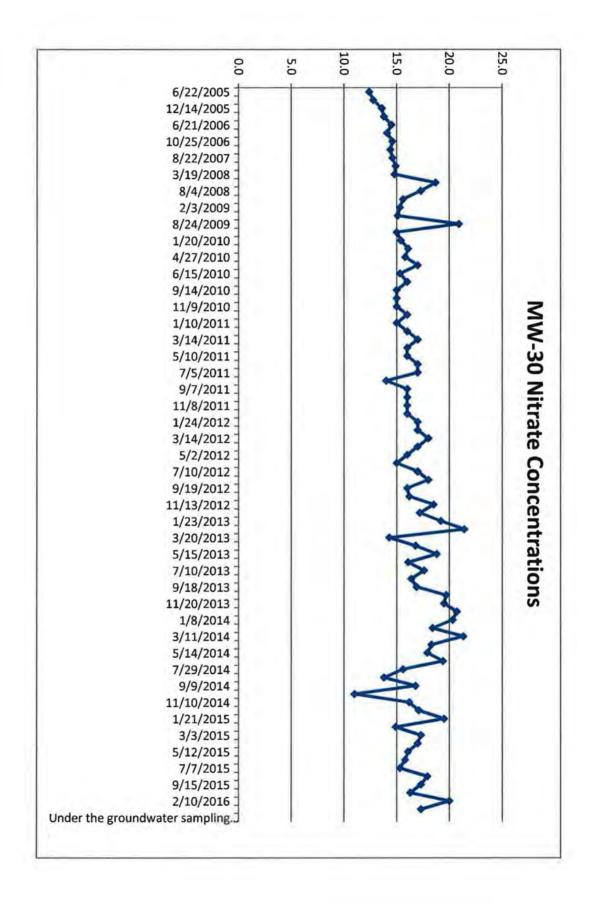


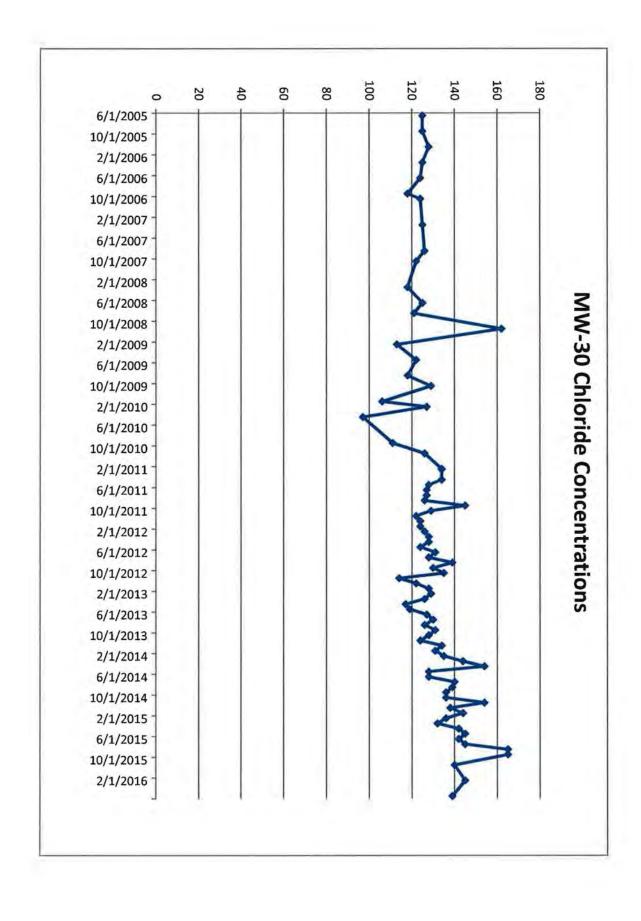


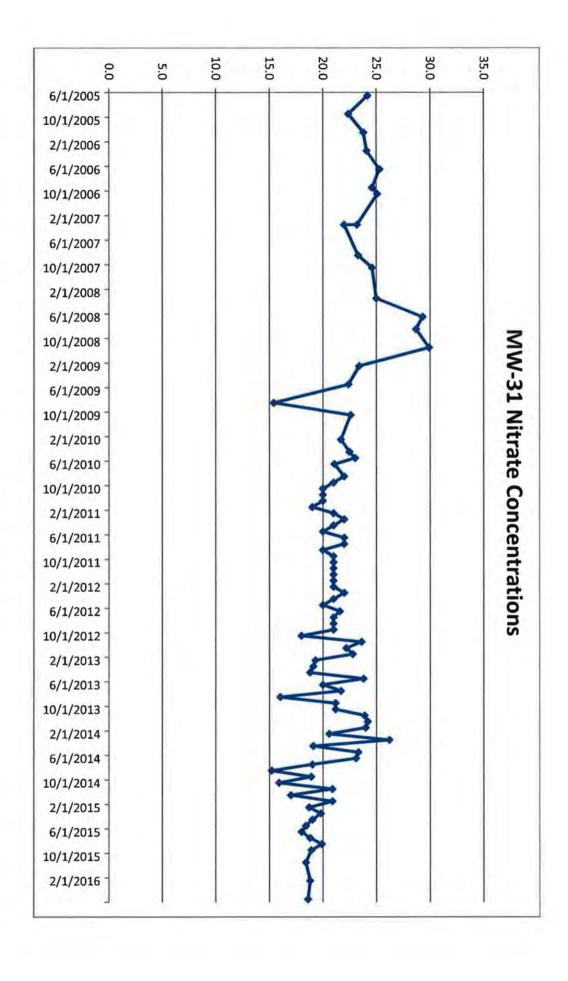


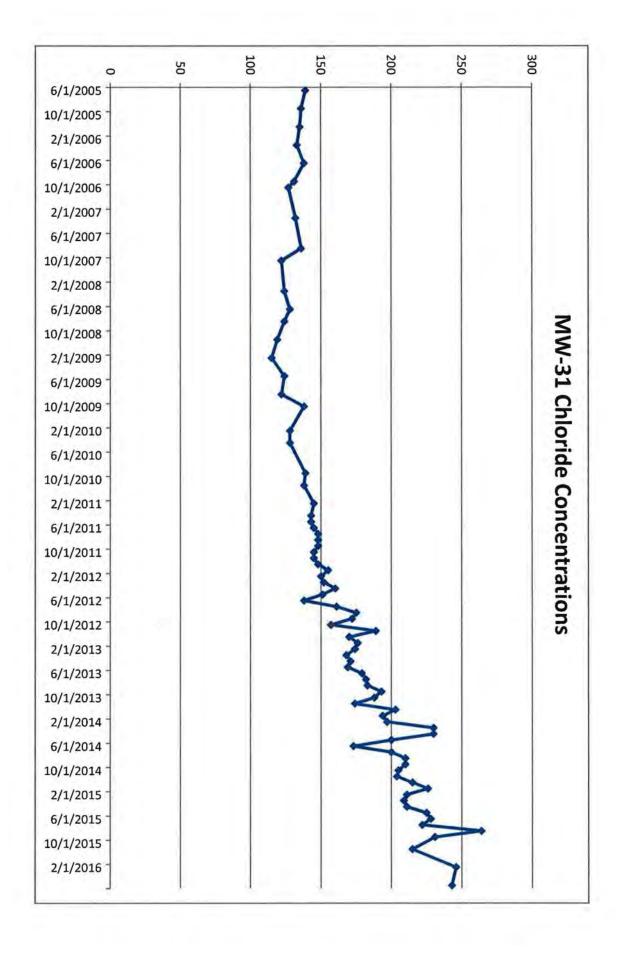












Tab L CSV Transmittal Letter

Kathy Weinel

From:

Kathy Weinel

Sent:

Tuesday, August 16, 2016 11:21 AM

To:

Goble, Phillip

Cc:

'Dean Henderson'; Harold Roberts; David Turk; Scott Bakken; Logan Shumway; David

Frydenlund

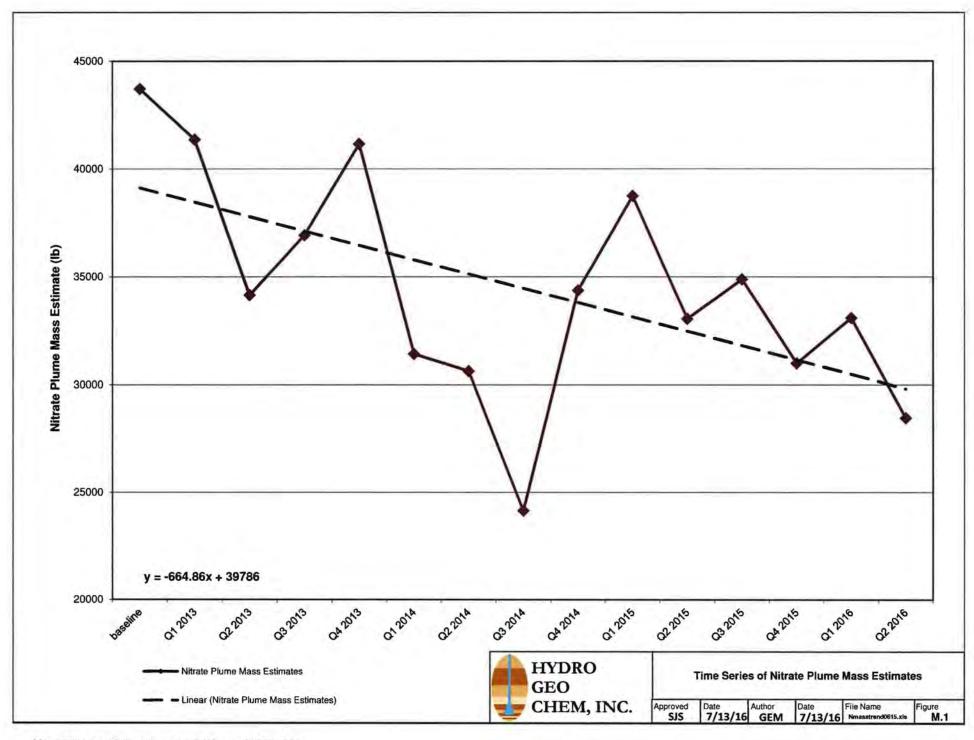
Subject:

Transmittal of CSV Files White Mesa Mill 2016 Q2 Nitrate Monitoring

Attachments:

1605437-EDD.csv

Mr. Goble,


Attached to this e-mail is an electronic copy of laboratory results for nitrate monitoring conducted at the White Mesa Mill during the second quarter of 2016, in Comma Separated Value (CSV) format.

Please contact me at 303-389-4134 if you have any questions on this transmittal.

Yours Truly

Kathy Weinel

$\label{eq:TabM} \mbox{Residual Mass Estimate Analysis Figure}$

